2024年江苏省苏州市星港中学数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列等式正确的是( )
A.B.C.D.
2、(4分)已知关于x的不等式组的整数解共有4个,则a的最小值为( )
A.1B.2C.2.1D.3
3、(4分)如图,已知一次函数的图象与轴交于点,则根据图象可得不等式的解集是( )
A.B.C.D.
4、(4分)下列多项式能分解因式的是( )
A.B.C.D.
5、(4分)下列关于向量的等式中,不正确的是( )
A.B.C.D.
6、(4分)把分式中的x、y的值同时扩大为原来的2倍,则分式的值( )
A.不变B.扩大为原来的2倍
C.扩大为原来的4倍D.缩小为原来的一半
7、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则( )
A.15.5B.16.5C.17.5D.18.5
8、(4分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为( )
A.()2013B.()2014C.()2013D.()2014
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 的图象上,则m的值为________.
10、(4分)菱形ABCD的边AB为5 cm,对角线AC为8 cm,则菱形ABCD的面积为_____cm1.
11、(4分)正比例函数()的图象过点(-1,3),则=__________.
12、(4分)一组数据1,3,5,7,9的方差为________.
13、(4分)若直线y=kx+b中,k<0,b>0,则直线不经过第_____象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)
(2)(﹣)(+)+×
15、(8分)如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.
16、(8分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。
(1)画出平移后的;
(2)求的面积.
17、(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:
(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;
(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?
18、(10分)关于的一元二次方程
求证:方程总有两个实数根
若方程两根且,求的值
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则x的取值范围为__________.
20、(4分)某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.
21、(4分)在平面直角坐标系中,直线与轴交于点,与反比例函数在第一象限内的图像相交于点,将直线平移后与反比例函数图像在第一象限内交于点,且的面积为18,则平移后的直线解析式为__________.
22、(4分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当C点落在直线y=2x-6上时,线段BC扫过的区域面积为________.
23、(4分)一次函数y= -2x+4的图象与坐标轴所围成的三角形面积是 _____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,使点B落在E处,AE交DC于点F,求△CEF的面积.
25、(10分)暑假期间,两位家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社.经协商,甲旅行社的优惠条件是:两位家长全额收费,学生都按7折收费;乙旅行社的优惠条件是:学生、家长都按8折收费.假设这两位家长带领x名学生去旅行,甲、乙旅行社的收费分别为y甲,y乙,
(1)写出y甲,y乙与x的函数关系式.
(2)学生人数在什么情况下,选择哪个旅行社合算?
26、(12分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
(1)点P在x轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过点A(2,-4)且与y轴平行的直线上.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平方根、算术平方根的求法,对二次根式进行化简即可.
【详解】
A.=2,此选项错误;
B.=2,此选项正确;
C. =﹣2,此选项错误;
D.=2,此选项错误;
故选:B.
本题考查了二次根式的化简和求值,是基础知识比较简单.
2、B
【解析】
首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数确定整数解,从而确定a的范围,进而求得最小值.
【详解】
解:
解①得x>-2,解②得x≤a.
则不等式组的解集是-2
则a的范围是2≤a<3.a的最小值是2.
故答案是:B
本题考查一元一次不等式组的整数解,确定a的范围是本题的关键.
3、D
【解析】
,即,从图象可以看出,当时,,即可求解.
【详解】
解:,即,
从图象可以看出,当时,,
故选:.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值,是解答本题的关键.
4、B
【解析】
直接利用分解因式的基本方法分别分析得出答案.
【详解】
解:A、x2+y2,无法分解因式,故此选项错误;
B、x2y-xy2=xy(x-y),故此选项正确;
C、x2+xy+y2,无法分解因式,故此选项错误;
D、x2+4x-4,无法分解因式,故此选项错误;
故选:B.
本题考查对分解因式的方法的理解和运用,分解因式的步骤是:第一步,先看看能否提公因式;第二步,再运用公式法,①平方差公式:a2-b2=(a+b)(a-b);② a2±2ab+b2=(a±b)2,第三步:再考虑用其它方法,如分组分解法等.
5、B
【解析】
根据平面向量的加法法则判定即可.
【详解】
A、,正确,本选项不符合题意;
B、,错误,本选项符合题意;
C、,正确,本选项不符合题意;
D、,正确,本选项不符合题意;
故选B.
本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
6、D
【解析】
根据分式的基本性质即可求出答案.
【详解】
解:原式=,
∴分式的值缩小为原来的一半;
故选择:D.
本题考查分式的基本性质,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
7、C
【解析】
根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则= +即可求解.
【详解】
解:∵四边形ABCD是平行四边形,
∴DE∥AB,
∴△DFE∽△BFA,
∵DE:EC=2:3,
∴DE:AB=2:5,DF:FB=2:5,
∵=2,根据相似三角形的面积比等于相似比的平方,
∴: =,即==12.5,
∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,
∴:= DF:FB=2:5,即==5,
∴= +=12.5+5=17.5,
故选C.
本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.
8、C
【解析】
根据等腰直角三角形的性质可得出S2+S2=S1,写出部分Sn的值,根据数的变化找出变化规律“Sn=()n−2”,依此规律即可得出结论.
【详解】
解:在图中标上字母E,如图所示.
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴S2+S2=S1.
观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
∴Sn=()n−2.
当n=2016时,S2016=()2016−2=()2012.
故选:C.
本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n−2”.本题属于中档题,难度不大,解决该题型题目时,写出部分Sn的值,根据数值的变化找出变化规律是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.
【详解】
△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)
∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)
∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)
∵△ABC某一边中点落在反比例函数上
∴2(-1+m)=3或-1×(-2+m)=3
m=2.5或-1(舍去).
故答案是:.
考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
10、14
【解析】
【分析】连接BD.利用菱形性质得BD=1OB,OA=AC,利用勾股定理求OB,通过对角线求菱形面积.
【详解】连接BD. AC⊥BD,
因为,四边形ABCD是菱形,
所以,AC⊥BD,BD=1OB,OA=AC=4cm,
所以,再Rt△AOB中,
OB=cm,
所以,BD=1OB=6 cm
所以,菱形的面积是
cm1
故答案为:14
【点睛】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.
11、-1
【解析】
将(-1,1)代入y=kx,求得k的值即可.
【详解】
∵正比例函数()的图象经过点(-1,1),
∴1=-k,
解得k=-1,
故答案为:-1.
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
12、8
【解析】
根据方差公式S2= 计算即可得出答案.
【详解】
解:∵ 数据为1,3,5,7,9,
∴平均数为:=5,
∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
故答案为8.
本题考查方差的计算,熟记方差公式是解题关键.
13、【解析】
∵k<0,b>0,∴直线y=kx+b经过第一、二、四象限,
故答案为一、二、四.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)3.
【解析】
(1)先化简各二次根式,再合并同类二次根式;
(2)根据二次根式的计算法则进行计算即可.
【详解】
解:(1)原式= ;
(2)原式=6-5+2=3.
15、 (1)1秒后PQ的长度等于5 cm;(1)△PQB的面积不能等于8 cm1.
【解析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;
(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.
【详解】
解:(1)根据题意,得BP=(5-x),BQ=1x.
当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,
∴(5-x)1+(1x)1=51,
5x1-10x=0,
5x(x-1)=0,
x1=0(舍去),x1=1,
答:1秒后PQ的长度等于5 cm.
(1)设经过x秒以后,△PBQ面积为8,
×(5-x)×1x=8.
整理得x1-5x+8=0,
Δ=15-31=-7<0,
∴△PQB的面积不能等于8 cm1.
此题主要考查了一元二次方程的应用,解题的关键是找到等量关系,列出方程并解答.
16、(1)详见解析;(2)
【解析】
(1)根据题意知:A到D是相右平移6个方格,相下平移2个方格,即可画出C、B的对应点,连接即可;
(2)化为正方形减去3个三角形即可.
【详解】
(1)如图所示:△DEF即为所求;
(2)
本题主要考查对平移的性质,作图-平移变换等知识点的理解和掌握,能根据题意正确画出图形是解此题的关键.
17、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.
【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用
【详解】
(1),,
∴ ∴排名顺序为:甲、丙、乙.
(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定
乙的成绩为:
丙的成绩为:
∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰
∴丙会被录用.
此题考查加权平均数,掌握运算法则是解题关键
18、 (1)证明见解析;(2)k=±4.
【解析】
(1)证明根的判别式△≥0即可;
(2)由根与系数的关系可得,,继而利用完全平方公式的变形可得关于k的方程,解方程即可.
【详解】
(1),
,
∵,
∴Δ≥0,
方程总有两个实数根;
(2),,
∴,
∴.
本题考查了一元二次方程根的判别式,根与系数的关系,熟练掌握相关知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≤1
【解析】
解:∵二次根式有意义,
∴1-x≥0,
∴x≤1.
故答案为:x≤1.
20、2
【解析】
设至少答对x道题,总分才不会低于1,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于2分,可列不等式求解.
【详解】
解:设至少答对x道题,总分才不会低于1,
根据题意,得
5x-3(20-x-3)≥2,
解之得x≥14.5.
答:至少答对2道题,总分才不会低于1.
故答案是:2.
本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.
21、y=x+1或y=x﹣2
【解析】
设反比例解析式为y=,将B坐标代入直线y=x﹣2中求出m的值,确定出B坐标,将B坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;当直线向上平移时,过C作CD垂直于y轴,过B作BE垂直于y轴,设y=x﹣2平移后解析式为y=x+b,C坐标为(a,a+b),△ABC面积=梯形BEDC面积+△ABE面积﹣△ACD面积,由已知△ABC面积列出关系式,将C坐标代入反比例解析式中列出关系式,两关系式联立求出b的值,即可确定出平移后直线的解析式;当直线向下平移时,假设平移后与反比例函数图像在第一象限内交于点C',若平移的距离和向上平移的距离相同,利用△ABC与△ABC'的同底等高,便能得到且它们的面积也相同,皆为18,符合题意,进而得到结果.
【详解】
解:将B坐标代入直线y=x﹣2中得:m﹣2=2,解得:m=4,
则B(4,2),即BE=4,OE=2,设反比例解析式为y=(k≠0),
将B(4,2)代入反比例解析式得:k=8,则反比例解析式为y=;
设平移后直线解析式为y=x+b,C(a,a+b),
对于直线y=x﹣2,令x=0求出y=﹣2,得到OA=2,
过C作CD⊥y轴,过B作BE⊥y轴,
将C坐标代入反比例解析式得:a(a+b)=8,
∵S△ABC=S梯形BCDE+S△ABE﹣S△ACD=18,
∴×(a+4)×(a+b﹣2)+×(2+2)×4﹣×a×(a+b+2)=18,
解得:b=1,则平移后直线解析式为y=x+1.
此时直线y=x+1是由y=x﹣2向上平移9个单位得到的,
同理,当直线向下平移9个单位时,直线解析式为y=x﹣2﹣9,即:y=x﹣2
设此时直线与反比例函数图像在第一象限内交于点C',
则此时△ABC与△ABC'是同底等高的两个三角形,
所以△ABC'也是18,符合题意,
故答案是:y=x+1或y=x﹣2.
此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形、梯形的面积求法,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.
22、5
【解析】
解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=1.
∵∠CAB=90°,BC=3,∴AC=4,∴A′C′=4.
∵点C′在直线y=4x﹣6上,∴4x﹣6=4,解得 x=3.
即OA′=3,∴CC′=3﹣1=4,∴S▱BCC′B′=4×4=5 (cm4).
即线段BC扫过的面积为5cm4.故答案为5.
23、4
【解析】
【分析】结合一次函数y=-2x+4的图象可以求出图象与x轴的交点为(2,0),以及与y轴的交点为(0,4),可求得图象与坐标轴所围成的三角形的面积.
【详解】令y=0,则x=2;令x=0,则y=4,
∴一次函数y=-2x+4的图象与x轴的交点为(2,0),与y轴的交点为(0,4).
∴S=.
故正确答案为4.
【点睛】本题考查了一次函数图象与坐标轴的交点坐标.关键令y=0,可求直线与x轴的交点坐标;令x=0,可求直线与y轴的交点坐标.
二、解答题(本大题共3个小题,共30分)
24、S△CEF=6.
【解析】
先利用全等三角形的判定与的性质求出FD=FE,FA=FC,设FD=x,则FA=FC=8-x,利用勾股定理求出x,即可解答
【详解】
AD=EC,∠D=∠C,∠AFD=∠CFE,
所以,△AFD≌△CFE,
所以,FD=FE,FA=FC,
设FD=x,则FA=FC=8-x
在Rt△ADF中,
42+x2=(8-x)2,解得:x=3,
所以,FD=3,
S△CEF=S△ADF==6
此题考查全等三角形的判定与性质,勾股定理,解题关键在于求出FD=3
25、(1)y甲、y乙与x的函数关系式分别为:y甲=700x+2000,y乙=800x+1600;(2)当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社相等.
【解析】
(1)根据甲旅行社的收费=两名家长的全额费用+学生的七折费用,可得到y1与x的函数关系式;再根据乙旅行社的收费=两名家长的八折费用+学生的八折费用,可得到y2与x的函数关系式;
(2)根据题意知:y甲<y乙时,可以确定学生人数,选择甲旅行社更省钱.
【详解】
试题解析:(1)由题意得:=2000+1000×0.7x=700x+2000,=2000×0.8+1000×0.8x =800x+1600;
(2)当<时,即:700x+2000<800x+1600
解得:x>4 ,
当>时,即:700x+2000>800x+1600
解得:x<4 ,
当=时,即:700x+2000=800x+1600
解得:x=4 ,
答:当学生人数超过4人时,选择甲旅行社更省钱,当学生人数少于4人时,选择乙旅行社更省钱,学生人数等于4人时,选择甲、乙旅行社一样.
考点: 一次函数的应用.
26、(1)(6,0);(2)(-12,-9); (3)(2,-2)
【解析】试题分析:(1)让纵坐标为0求得m的值,代入点P的坐标即可求解;(2)让纵坐标-横坐标=3得m的值,代入点P的坐标即可求解;(3)让横坐标为2求得m的值,代入点P的坐标即可求解.
试题解析:
(1))点P在x轴上,故纵坐标为0,所以m-1=0,m=1,点P的坐标(6,0);
(2)因为点P的纵坐标比横坐标大3,故(m -1)-(2m+4)=3,m=-8,点P的坐标(-12,-9);
(3) 点P在过A(2,-4)点,且与y轴平行的直线上,所以点P横坐标与A(2,-4)相同,即2m+4=2,m=-1,点P的坐标(2,-2)
题号
一
二
三
四
五
总分
得分
应试者
面试成绩
笔试成绩
才艺
甲
83
79
90
乙
85
80
75
丙
80
90
73
2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州市南环中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州市南环中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省江阴市澄西中学数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年江苏省江阴市澄西中学数学九年级第一学期开学统考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。