终身会员
搜索
    上传资料 赚现金

    2024年江苏省启东市数学九上开学调研模拟试题【含答案】

    立即下载
    加入资料篮
    2024年江苏省启东市数学九上开学调研模拟试题【含答案】第1页
    2024年江苏省启东市数学九上开学调研模拟试题【含答案】第2页
    2024年江苏省启东市数学九上开学调研模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省启东市数学九上开学调研模拟试题【含答案】

    展开

    这是一份2024年江苏省启东市数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
    A.方差B.平均数C.中位数D.众数
    2、(4分)下列命题中,是真命题的是( )
    A.平行四边形的对角线一定相等
    B.等腰三角形任意一条边上的高线、中线和角平分线都三线合一
    C.三角形的中位线平行于第三边并且等于它的一半
    D.三角形的两边之和小于第三边
    3、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是
    A.B.C.D.
    4、(4分)下列式子中,表示y是x的正比例函数的是( )
    A.y=2x2B.y=C.y=D.y2=3x
    5、(4分)一元二次方程x2-9=0的解为( )
    A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
    6、(4分)若式子在实数范围内有意义,则的取值范围是( )
    A.B.C.D.
    7、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )
    A.12B.10C.8D.11
    8、(4分)在平面直角坐标系中,点位于( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
    10、(4分)已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)
    11、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.
    12、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
    13、(4分)如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)解方程:=;
    (2)因式分解:2x2-1.
    15、(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.
    (1)求EG:BG的值;
    (2)求证:AG=OG;
    (3)设AG=a,GH=b,HO=c,求a:b:c的值.
    16、(8分)(本小题满分12分)
    直线y=x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作长方形ABCD,AB:BC=3:1.
    (1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;
    (2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.
    17、(10分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
    (1)求证:ABAC;
    (2)若DC=2,求梯形ABCD的面积.
    18、(10分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
    (1)求证:BD⊥CB;
    (2)求四边形 ABCD 的面积;
    (3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
    点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.
    20、(4分)如图,是互相垂直的小路,它们用连接,则_______.
    21、(4分)要使二次根式有意义,则自变量的取值范围是___.
    22、(4分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.
    23、(4分)已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.
    25、(10分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示
    (1)求甲车从A地到达B地的行驶时间;
    (2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;
    (3)求乙车到达A地时甲车距A地的路程.
    26、(12分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.

    (1)求证:;
    (2)求证:;
    (3)当时,求的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
    故选.
    2、C
    【解析】
    根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.
    【详解】
    解:A、平行四边形的对角线互相平分,说法错误,故A选项错误;
    B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项错误;
    C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项正确;
    D、三角形的两边之和大于第三边,说法错误,故D选项错误.
    故选:C.
    本题考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解答关键是熟记相关的性质与判定.
    3、B
    【解析】
    根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.
    【详解】
    当时,四边形EFGH是矩形,
    ,,,

    即,
    四边形EFGH是矩形;
    故选:B.
    此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.
    4、C
    【解析】
    根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.
    【详解】
    A、y=2x2表示y是x的二次函数,故本选项错误;
    B、y=表示y是x的反比例函数,故本选项错误;
    C、y=表示y是x的正比例函数,故本选项正确;
    D、y2=3x不符合正比例函数的含义,故本选项错误;
    故选:C.
    本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
    5、C
    【解析】
    先变形得到x2=9,然后利用直接开平方法解方程.
    【详解】
    解:x2=9,
    ∴x=±1,
    ∴x1=1,x2=-1.
    故选:C.
    本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
    6、D
    【解析】
    由二次根式的性质可以得到x-1≥0,由此即可求解.
    【详解】
    解:依题意得:x-1≥0,
    ∴x≥1.
    故选:D.
    此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.
    7、A
    【解析】
    根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
    【详解】
    设这个多边形是n边形,
    根据题意得,(n﹣2)•180°=5×360°,
    解得n=1.
    故选:A.
    本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.
    8、B
    【解析】
    应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.
    【详解】
    ∵点P(−1,2)的横坐标−1<0,纵坐标2>0,
    ∴点P在第二象限。
    故选:B.
    此题考查点的坐标,难度不大
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、85分
    【解析】
    根据加权平均数的定义计算可得.
    【详解】
    根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
    故答案为:85分.
    本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
    10、y=x+1
    【解析】
    ∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.
    【详解】
    解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)
    一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    11、1.
    【解析】
    如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AB=CD,BC=AD,OA=OC,OB=OD;
    又∵△OAB的周长比△OBC的周长大3,
    ∴AB+OA+OB﹣(BC+OB+OC)=3
    ∴AB﹣BC=3,
    又∵▱ABCD的周长是30,
    ∴AB+BC=15,
    ∴AB=1.
    故答案为1.
    12、或
    【解析】
    沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
    【详解】
    (1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
    由折叠得:是正方形,此时:,
    (2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
    由折叠得:,
    在中,,

    设,则,
    在中,由勾股定理得:,解得:,
    在中,由勾股定理得:,
    折痕长为:或.
    考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
    13、
    【解析】
    作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.
    【详解】
    解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).
    ∵反比例函数的图象经过点A(4,5),
    所以由勾股定理可知:OA=,
    ∴k=4×5=20,
    ∴y=,
    ∴AA′的中点K(),
    ∴直线OK的解析式为y=x,
    由,
    解得或,
    ∵点P在第一象限,
    ∴P(),
    故答案为().
    本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)x=-10;(2)2(x+2)(x-2)
    【解析】
    (1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
    (2)原式先提取公因式,再利用平方差公式分解即可.
    【详解】
    解:(1)去分母得:2x-4=3x+6,解得:x=-10,
    经检验x=-10是分式方程的解,
    ∴原方程的解为:x=-10;
    (2)原式=.
    此题考查了解分式方程以及提公因式法与公式法的综合运用,熟练掌握分式方程的解法和分解因式的方法是解本题的关键.
    15、(1)1:3;(1)见解析;(3)5:3:1.
    【解析】
    (1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;
    (1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;
    (3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AO=AC,AD=BC,AD∥BC,
    ∴△AEG∽△CBG,
    ∴.
    ∵AE=EF=FD,
    ∴BC=AD=3AE,
    ∴GC=3AG,GB=3EG,
    ∴EG:BG=1:3;
    (1)∵GC=3AG(已证),
    ∴AC=4AG,
    ∴AO=AC=1AG,
    ∴GO=AO﹣AG=AG;
    (3)∵AE=EF=FD,
    ∴BC=AD=3AE,AF=1AE.
    ∵AD∥BC,
    ∴△AFH∽△CBH,
    ∴,
    ∴=,即AH=AC.
    ∵AC=4AG,
    ∴a=AG=AC,
    b=AH﹣AG=AC﹣AC=AC,
    c=AO﹣AH=AC﹣AC=AC,
    ∴a:b:c=::=5:3:1.
    16、(1);(2)四边形ADBE仍然是平行四边形;.
    【解析】
    试题分析:对于直线y=x+6,分别令x与y为0求出y与x的值,确定出E与F坐标,
    (1)当A与F重合时,根据F坐标确定出A坐标,进而确定出AB的长,由AB与BC的比值求出BC的长,确定出AD=BE,而AD与BE平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据AB与BC的长确定出D坐标,设直线DE解析式为y=kx+b,将D与E坐标代入求出k与b的值,即可确定出直线DE解析式;
    (2)当点A不与点F重合时,四边形ADBE仍然是平行四边形,理由为:根据直线y=x+6解析式设出A坐标,进而表示出AB的长,根据A与B横坐标相同确定出B坐标,进而表示出EB的长,发现EB=AD,而EB与AD平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据BC的长求出OC的长,表示出D坐标,设直线DE解析式为y=k1x+b1,将D与E坐标代入求出k1与b1的值,即可确定出直线DE解析式.
    试题解析:对于直线y=x+6,
    令x=0,得到y=6;令y=0,得到x=﹣8,即E(﹣8,0),F(0,6),
    (1)当点A与点F重合时,A(0,6),即AB=6,
    ∵AB:BC=2:1,
    ∴BC=8,
    ∴AD=BE=8,
    又∵AD∥BE,
    ∴四边形ADBE是平行四边形;
    ∴D(8,6),
    设直线DE解析式为y=kx+b(k、b为常数且k≠0),
    将D(8,6),E(﹣8,0)代入得:,
    解得:b=2,k=.
    则直线DE解析式为y=x+2;
    (2)四边形ADBE仍然是平行四边形,理由为:
    设点A(m,m+6)即AB=m+6,OB=﹣m,即B(m,0),
    ∴BE=m+8,
    又∵AB:BC=2:1,
    ∴BC=m+8,
    ∴AD=m+8,
    ∴BE=AD,
    又∵BE∥AD,
    ∴四边形ADBE仍然是平行四边形;
    又∵BC=m+8,
    ∴OC=2m+8,
    ∴D(2m+8,m+6),
    设直线DE解析式为y=k1x+b1(k1、b1为常数且k1≠0),
    将D与E坐标代入得:,
    解得:k1=,b1=2,
    则直线DE解析式为y=x+2.
    考点:一次函数综合题.
    17、(1)见解析;(2)
    【解析】
    (1)利用等腰梯形的性质可求得,再利用平行的性质及等边对等角可求出,然后根据三角形内角和即可求出,从而得到结论;
    (2)过点作于点,利用含30°角的直角三角形的性质可求出BE、BC,根据勾股定理求出AE,然后利用面积公式进行计算即可.
    【详解】
    证明:(1)∵,,,
    ∴,,
    又∵,
    ∴,
    ∴,
    ∴,
    ∴;
    (2)过点作于,
    ∵,
    ∴,
    又∵,
    ∴,
    ∴在中,,
    ∵,,
    ∴,
    ∴.
    本题考查了等腰梯形的性质,含30°角的直角三角形的性质,等边对等角及勾股定理,需要熟记基础的性质定理,熟练应用.
    18、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
    【解析】
    (1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
    BD⊥BC;
    (1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
    (3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
    【详解】
    (1)证明:连接 BD.
    ∵AD=4m,AB=3m,∠BAD=90°,
    ∴BD=5m.
    又∵BC=11m,CD=13m,
    ∴BD1+BC1=CD1.
    ∴BD⊥CB;
    (1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
    = ×3×4+ ×11×5
    =6+30
    =36(m1).
    故这块土地的面积是 36m1;
    (3)∵S△PBD=S 四边形ABCD
    ∴•PD•AB= ×36,
    ∴•PD×3=9,
    ∴PD=6,
    ∵D(0,4),点 P 在 y 轴上,
    ∴P 的坐标为(0,-1)或(0,10).
    本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3
    【解析】
    根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.
    【详解】
    解:因为四边形ABCD是菱形,
    所以AC⊥BD.
    在Rt△AOB中,利用勾股定理求得BO=1.
    ∴BD=6,AC=2.
    ∴菱形ABCD面积为×AC×BD=3.
    故答案为3.
    本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.
    20、450°
    【解析】
    如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠的度数.
    【详解】
    解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,
    则∠BAQ=∠DEQ=90°,
    ∵DE⊥AB,QA⊥AB,
    ∴DE∥QA,
    ∴∠AQE=180°-∠DEQ=90°,
    ∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,
    ∴=720°-90°×3=450°.
    故答案为:450°.
    本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.
    21、
    【解析】
    根据被开方数必须是非负数,可得答案.
    【详解】
    解:由题意,得

    解得,
    故答案为:.
    本题考查了二次根式的意义条件,概念:式子叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.
    22、5
    【解析】
    由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值
    【详解】
    ∵M为AE中点,N为EP中点
    ∴MN为△AEP的中位线,
    ∴MN= AP
    若要MN最大,则AP最大.
    P在CD上运动,当P运动至点C时PA最大,
    此时PA=CA是矩形ABCD的对角线
    AC==10,
    MN的最大值= AC=5
    故答案为5
    此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP
    23、1
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可求得答案.
    【详解】
    解:
    ∵直角三角形斜边长为6cm,
    ∴斜边上的中线长= ,
    故答案为:1.
    本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析
    【解析】
    由平行四边形性质得,,,又证≌,可得,.
    【详解】
    证明:
    四边形ABCD是平行四边形,
    ,,




    在和中,

    ≌,

    本题考核知识点:平行四边形性质,全等三角形. 解题关键点:由全等三角形性质得到线段相等.
    25、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.
    【解析】
    试题分析:(1)根据题意列算式即可得到结论;
    (2)根据题意列方程组即可得到结论;
    (3)根据题意列算式即可得到结论.
    试题解析:(1)300÷(180÷1.5)=2.5(小时).
    答:甲车从A地到达B地的行驶时间是2.5小时;
    (2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);
    (3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米.
    答:乙车到达A地时甲车距A地的路程是175千米.
    考点:一次函数的应用;分段函数.
    26、(1)证明见解析;(2)证明见解析;(3)PH=.
    【解析】
    (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
    (2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
    (3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
    【详解】
    (1)证明:∵PE=BE,
    ∴∠EPB=∠EBP,
    又∵∠EPH=∠EBC=90°,
    ∴∠EPH-∠EPB=∠EBC-∠EBP.
    即∠BPH=∠PBC.
    又∵四边形ABCD为正方形
    ∴AD∥BC,
    ∴∠APB=∠PBC.
    ∴∠APB=∠BPH.
    (2)证明:过B作BQ⊥PH,垂足为Q,
    由(1)知,∠APB=∠BPH,
    在△ABP与△QBP中,

    ∴△ABP≌△QBP(AAS),
    ∴AP=QP,BA=BQ.
    又∵AB=BC,
    ∴BC=BQ.
    又∵∠C=∠BQH=90°,
    ∴△BCH和△BQH是直角三角形,
    在Rt△BCH与Rt△BQH中,

    ∴Rt△BCH≌Rt△BQH(HL),
    ∴CH=QH,
    ∴AP+HC=PH.
    (3)解:∵AP=2,
    ∴PD=AD-AP=8-2=6,
    设AE=x,则EP=8-x,
    在Rt△AEP中,AE2+AP2=PE2,
    即x2+22=(8-x)2,
    解得:x=,
    ∵∠A=∠D=∠ABC=90°,
    ∴∠AEP+∠APE=90°,
    由折叠的性质可得:∠EPG=∠ABC=90°,
    ∴∠APE+∠DPH=90°,
    ∴∠AEP=∠DPH,
    ∴△DPH∽△AEP,
    ∴,
    ∴,
    解得:DH=.
    ∴PH=
    此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】:

    这是一份2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】:

    这是一份2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省邗江中学九上数学开学调研模拟试题【含答案】:

    这是一份2024年江苏省邗江中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map