2024年湖北省襄阳四中学九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用反证法证明“若 a⊥c,b⊥c,则 a∥b”时,应假设( )
A.a 不垂直于 cB.a垂直于bC.a、b 都不垂直于 cD.a 与 b 相交
2、(4分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )
A.130°B.150°C.160°D.170°
3、(4分)一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )
A.7和4.5B.4和6C.7和4D.7和5
4、(4分)点关于原点的对称点坐标是( )
A.B.C.D.
5、(4分)某正比例函数的图象如图所示,则此正比例函数的表达式为()
A.y=xB.y=xC.y=-2xD.y=2x
6、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为( )
A.(﹣,2)B.(﹣3,)C.(﹣2,2)D.(﹣3,2)
7、(4分)下列四边形中是轴对称图形的个数是( )
A.4个B.3个C.2个D.1个
8、(4分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.1,4,3.1,1,1,3.1.这组数据的众数是( )
A.3B.3.1C.4D.1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若代数式有意义,则的取值范围为__________.
10、(4分)若代数式有意义,则x的取值范围是______。
11、(4分)化简:= .
12、(4分)已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.
13、(4分)= ▲ .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
15、(8分)铜仁市积极推动某公园建设,通过旅游带动一方经济,计划经过若干年使公园绿化总面积新增450万平方米.自2016年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可以提前3年完成任务.
(1)求实际每年绿化面积是多少万平方米
(2)为加大公园绿化力度,市政府决定从2019年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
16、(8分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.
17、(10分)为了参加“仙桃市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,1.通过数据分析,列表如下:
(1)直接写出表中a,b,c,d的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
18、(10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查,已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制成如下所示的统计表和如图所示的统计图.
根据图表中提供的信息,回答下列问题:
(1)女生身高在B组的有________人;
(2)在样本中,身高在150≤x<155之间的共有________人,身高人数最多的在________组(填组别序号);
(3)已知该校共有男生500人,女生480人,请估计身高在155≤x<165之间的学生有多少人.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.
20、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
21、(4分)如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点. 设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________。
22、(4分)如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.
23、(4分)分解因式:________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八(3)班全体同学参加植树苗活动,下面是今年3月份该班同学植树苗情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)该班同学共________人,植树苗3株的人数为________人;
(2)该班同学植树苗株数的中位数是________;
(3)小明用以下方法计算该班同学平均植树苗的株数是:(株),根据你所学知识判断小明的计算是否正确,若不正确,请计算出正确的结果.
25、(10分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.
求证:∠DAF=∠BCE.
26、(12分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.
(1)求直线AB的解析式;
(2)求证:△PAO≌△MPN;
(3)若PB=m(m>0),用含m的代数式表示点M的坐标;
(4)求直线MB的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.
【详解】
解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,
应假设:a不平行b或a与b相交.
故选择:D.
本题考查了反证法,解此题关键要懂得反证法的意义及步骤.
反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
2、C
【解析】
根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.
【详解】
∵四边形ABCD是平行四边形,∠ADC=60°,
∴∠ABC=60°,∠DCB=120°,
∵∠ADA′=50°,
∴∠A′DC=10°,
∴∠DA′B=130°,
∵AE⊥BC于点E,
∴∠BAE=30°,
∵△BAE顺时针旋转,得到△BA′E′,
∴∠BA′E′=∠BAE=30°,
∴∠DA′E′=∠DA′B+∠BA′E′=160°.
故选C.
考点:旋转的性质;平行四边形的性质.
3、D
【解析】
试题解析:这组数据按照从小到大的顺序排列为:2,3,4,6,7,7,
则众数为:7,
中位数为:
故选D.
考点:1.众数;2.中位数.
4、B
【解析】
坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.
【详解】
根据中心对称的性质,得点关于原点的对称点的坐标为.
故选B.
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
5、A
【解析】
本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.
【详解】
解:正比例函数的图象过点M(−2,1),
∴将点(−2,1)代入y=kx,得:
1=−2k,
∴k=﹣,
∴y=﹣x,
故选A.
本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.
6、A
【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
∵直线y=-x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE= ,
∴点C的坐标为(-,2).
故选A.
考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
7、B
【解析】
根据轴对称图形的概念逐一进行判断即可.
【详解】
平行四边形不是轴对称图形,故不符合题意;
矩形是轴对称图形,故符合题意;
菱形是轴对称图形,故符合题意;
正方形是轴对称图形,故符合题意,
所以是轴对称图形的个数是3个,
故选B.
本题考查了轴对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.
8、B
【解析】
试题分析:在这一组数据中3.1出现了3次,次数最多,故众数是3.1.故选B.
考点:众数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、且.
【解析】
根据二次根式和分式有意义的条件进行解答即可.
【详解】
解:∵代数式有意义,
∴x≥0,x-1≠0,
解得x≥0且x≠1.
故答案为x≥0且x≠1.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.
10、x>5
【解析】
若代数式 有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.
【详解】
若代数式有意义,
则≠0,得出x≠5.
根据根式的性质知中被开方数x-5≥0
则x≥5,
由于x≠5,则可得出x>5,
答案为x>5.
本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.
11、.
【解析】
试题分析:原式=.
考点:二次根式的乘除法.
12、m>3.
【解析】
试题分析:因为点P在第二象限,所以,,解得:
考点:(1)平面直角坐标;(2)解不等式组
13、1.
【解析】
针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形
【解析】
(1)证明:∵AB=AC
点D为BC的中点
∴∠BAE=∠CAE
又∵AB=AC,AE=AE
∴△ABE≌△ACE(SAS)
(2)当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形
∵AE=2AD,∴AD=DE
又点D为BC中点,∴BD=CD
∴四边形ABEC为平行四形
∵AB=AC
∴四边形ABEC为菱形
15、 (1)实际每年绿化面积为75万平方米;(2)平均每年绿化面积至少还要增加37.5万平方米.
【解析】
(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.5x万平方米.根据“实际每年绿化面积是原计划的1.5倍,这样可提前3年完成任务”列出方程;
(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.
【详解】
解:(1)设原计划每年绿化面积为x万平方米,
,
解得x=50,
经检验,x=50是此分式方程的解.
∴1.5x=75.
答:实际每年绿化面积为75万平方米.
(2)设平均每年绿化面积至少还要增加a万平方米,
75×3+2(75+a)≥450,解得a≥37.5.
答:平均每年绿化面积至少还要增加37.5万平方米.
此题考查一元一次不等式的应用,分式方程的应用,解题关键在于列出方程
16、12.
【解析】
根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.
【详解】
∵ D、E是AB、BC的中点,DE=3
∴AC=2DE=6
∵∠A=90°,∠B=30°
∴BC=2AC=12.
此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.
17、 (1)a=86,b=2,c=2,d=22.8;(2) 八(2)班前5名同学的成绩较好,理由见解析
【解析】
(1)根据平均数、中位数、众数的概念解答, 根据方差计算公式,求出八(1)班的方差即可;
(2)先根据方差计算公式,求出八(1)班的方差,结合平均数、中位数、众数与方差的意义求解即可;
【详解】
(1)八(2)班的平均分a=(79+2+92+2+1)÷5=86,
将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,2,2,86,92,第三个数是2,所以中位数b=2,
2出现了2次,次数最多,所以众数c=2.
八(1)班的方差d=[(86-2)2+(2-2)2+(77-2)2+(92-2)2+(2-2)2]÷5=22.8;
故答案为86,2,2,22.8;
(2)∵由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,
∴八(2)班前5名同学的成绩较好;
考查方差、平均数、众数和中位数,平均数表示一组数据的平均程度.一组数据中出现次数最多的数据叫做众数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
18、(1)12;(2)16;C;(3) 541人.
【解析】
先计算出B组所占百分之再求即可
将位于这一小组内的频数相加即可求得结果;
分别计算男、女生的人数,相加即可得解.
【详解】
解:(1)女生身高在B组的人数有40×(1−30%−20%−15%−5%)=12人;
(2) 在样本中,身高在150⩽x<155之间的人数共有4+12=16人,身高人数最多的在C组;
(3)500×+480×(30%+15%)=541(人).
答:估计身高在155≤x<165之间的学生约有541人.
本题主要考查从统计图表中获取信息,解题的关键是要读懂统计图.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±1.
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:因为△AOM的面积是3,
所以|k|=2×3=1.
所以k=±1.
故答案为:±1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,这里体现了数形结合的思想,正确理解k的几何意义是关键.
20、>
【解析】
根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
21、6.1
【解析】
根据题意求得CD=BC=2,即可求得OD=,由△POA的面积是△PCD面积的2倍,得出xP=3,根据△POD的面积等于2k﹣8,列出关于k的方程,解方程即可求得.
【详解】
∵▱OABC的顶点A的坐标为(2,0),
∴BD∥x轴,OA=BC=2,
∵反比例函数和的图象分别经过C,B两点,
∴DC•OD=k,BD•OD=2k,
∴BD=2CD,
∴CD=BC=2,BD=1,
∴C(2,),B(1,),
∴OD=,
∵△POA的面积是△PCD面积的2倍,
∴yP=,
∴xP==3,
∵△POD的面积等于2k﹣8,
∴OD•xP=2k﹣8,即×3=2k﹣8,
解得k=6.1,故答案为6.1.
本题考查反比例函数系数k的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P的横坐标是解题的关键.
22、
【解析】
过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.
【详解】
解:如图,过D作DF⊥AB于F,
∵AD平分∠BAC,∠C=90°,
∴DF=CD=2.
∵Rt△ABC中,∠C=90°,AC=BC,
∴∠ABC=45°,
∴△BDF是等腰直角三角形,
∵BF=DF=2,BD=DF=2,
∴BC=CD+BD=2+2,AC=BC=2+2.
∵AE//BC,BE⊥AD,
∴四边形ADBE是平行四边形,
∴AE=BD=2,
∴平行四边形ADBE的面积= .
故答案为.
本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.
23、.
【解析】
首先提取公因式3ab,再运用完全平方公式继续进行因式分解.
【详解】
解:=
本题考查了提公因式法,公式法分解因式,有公因式的首先提取公因式.掌握完全平方公式的特点:两个平方项,中间一项是两个底数的积的2倍,难点在于要进行二次因式分解.
二、解答题(本大题共3个小题,共30分)
24、 (1)50,12;(2)2;(3)小明的计算不正确,正确的计算为2.4株
【解析】
(1)由植树苗2株的人数及其所占的百分比即可求出该班的人数,再减去植树苗1株、2株、4株、5株的人数可得植树苗3株的人数;
(2)根据中位数的定义即可求得;
(3)根据平均数的定义即可判断.
【详解】
解:(1)该班的人数为;植树苗3株的人数为;
(2)将植数苗的株数按从小到大排列,处于最中间位置的株数为2株,故该班同学植树苗株数的中位数是2;
(3)该班同学平均植树苗的株数应是总株数除以总人数,而不是总株数,5也不是总人数,所以小明的计算不正确.
正确的结果应为:株
本题考查了数据的处理,掌握中位数及平均数的定义是解题的关键.
25、详见解析
【解析】
只要证明△ADF≌△CBE即可解决问题.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵DF=BE,
∴△ADF≌△CBE,
∴∠DAF=∠BCE.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
26、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.
【解析】
(3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;
(3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;
(3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.
(4)设直线MB的解析式为y=nx﹣3,根据点M(m+3,﹣m﹣4).然后求得直线MB的解析式.
【详解】
(3)解:设直线AB:y=kx+b(k≠2)
代入A(3,2 ),B (2,﹣3 ),得
,
解得,
∴直线AB的解析式为:y=x﹣3.
(3)证明:作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=92°.
∴∠OPA+∠NPM=92°.
∵∠NMP+∠NPM=92°,
∴∠OPA=∠NMP.
在△PAO与△MPN中
,
∴△PAO≌△MPN(AAS).
(3)由(3)知,△PAO≌△MPN,则OP=NM,OA=NP.
∵PB=m(m>2),
∴ON=3+m+3=4+m MN=OP=3+m.
∵点M在第四象限,
∴点M的坐标为(3+m,﹣4﹣m).
(4)设直线MB的解析式为y=nx﹣3(n≠2).
∵点M(3+m,﹣4﹣m).
在直线MB上,
∴﹣4﹣m=n(3+m)﹣3.
整理,得(m+3)n=﹣m﹣3.
∵m>2,
∴m+3≠2.
解得 n=﹣3.
∴直线MB的解析式为y=﹣x﹣3.
本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.
题号
一
二
三
四
五
总分
得分
批阅人
组别
身高(cm)
A
x<150
B
150≤x<155
C
155≤x<160
D
160≤x<165
E
x≥165
2024-2025学年湖北省咸宁市天城中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖北省咸宁市天城中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省武汉为明学校九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省武汉为明学校九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年北京四中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年北京四中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。