|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】01
    2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】02
    2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】

    展开
    这是一份2024年湖北省襄阳市襄阳五中学实验中学数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,已知中,,,将绕点顺时针方向旋转到的位置,连接,则的长为( )
    A.B.C.D.
    2、(4分)如图,以正方形ABCD的边AB为一边向外作等边三角形ABE,则∠BED的度数为( )
    A.55°B.45°C.40°D.42.5°
    3、(4分)下列因式分解正确的是( )
    A.2x2+4x=2(x2+2x)B.x2﹣y2=(x+y)(x﹣y)
    C.x2﹣2x+1=(x﹣2)2D.x2+y2=(x+y)2
    4、(4分)如图,将沿直线向右平移后到达的位置,连接、,若的面积为10,则四边形的面积为( )
    A.15B.18C.20D.24
    5、(4分)样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )
    A.8B.5C.D.3
    6、(4分)某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程( )
    A.B.
    C.D.
    7、(4分)直线过点,,则的值是( )
    A.B.C.D.
    8、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()
    A.(,1)B.(2,1)
    C.(2,)D.(1,)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是_____.
    10、(4分)如图,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC顶点A、C分别在ON、OM上,点D是AB边上的中点,当点A在边ON上运动时,点C随之在边OM上运动,则OD的最大值为_____.
    11、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
    12、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
    该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
    13、(4分)如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)正方形ABCD的边长为6,点E、F分别在AB、BC上,将AD、DC分别沿DE、DF折叠,点A、C恰好都落在P处,且.
    求EF的长;
    求的面积.
    15、(8分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),线段OA上的动点M(与O,A不重合)从A点以每秒1个单位的速度沿x轴向左移动。
    (1)求A、B两点的坐标;
    (2)求△COM的面积S与M的移动时间t之间的函数关系式,并写出t的取值范围;
    (3)当t何值时△COM≌△AOB,并求此时M点的坐标。
    16、(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.
    (1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
    (2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.
    17、(10分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.
    18、(10分)已知抛物线与轴交于两点,与轴交于点.
    (1)求的取值范围;
    (2)若,直线经过点,与轴交于点,且,求抛物线的解析式;
    (3)若点在点左边,在第一象限内,(2)中所得到抛物线上是否存在一点,使直线分的面积为两部分?若存在,求出点的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分) 已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.
    20、(4分)如图,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD,FE分别交AC,BC于点D,E两点,当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),给出以下个结论:①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.上述结论中始终正确的有______.(填序号)
    21、(4分)若关于x的分式方程=+2有正整数解,则符合条件的非负整数a的值为_____.
    22、(4分)一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.
    23、(4分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度,按要求作图:
    ①画出关于原点的中心对称图形;
    ②画出将绕点逆时针旋转得到
    ③请在网格内过点画一条直线将平分成两个面积相等的部分.
    25、(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy,ABC的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).
    (1)平移ABC,使得点A的对应点为A1(2,﹣1),点B,C的对应点分别为B1,C1,画出平移后的A1B1C1;
    (2)在(1)的基础上,画出A1B1C1绕原点O顺时针旋转90°得到的A2B2C2,其中点A1,B1,C1的对应点分别为A2,B2,C2,并直接写出点C2的坐标.
    26、(12分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:
    (1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;
    (2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
    【详解】
    解:如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90°,,
    ∴AB= =4,
    ∴BD= ,
    C′D=2,
    ∴BC′=BD-C′D=.
    故选B.
    本题考查旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键.
    2、B
    【解析】
    根据等边三角形和正方形的性质,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.
    【详解】
    解:∵等边△ABE,
    ∴∠EAB=60°,AB=AE
    ∴∠EAD=150°,
    ∵正方形ABCD,
    ∴AD=AB
    ∴AE=AD,
    ∴∠AED=∠ADE=15°,
    ∴∠BED=60°-15°=45°,
    故选:B.
    此题主要考查了等边三角形的性质.即每个角为60度.
    3、B
    【解析】
    把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式,是否最简整式是关键和左右两边等式是否相等来判断
    【详解】
    A .2x2+4x=2(x2+2x)中(x2+2x)不是最简整式,还可以提取x,故A错误。
    B. x2﹣y2=(x+y)(x﹣y)既是最简,左右两边又相等,所以B正确
    C. x2﹣2x+1=(x﹣2)2满足了最简相乘,但是等式左右两边不相等
    D. x2+y2=(x+y)2满足了最简相乘,但是等式左右两边不相等
    主要考查因式分解的定义和整式的乘法
    4、A
    【解析】
    根据平移的性质和平行四边形的判定条件可得四边形BDEC是平行四边形,得到四边形BDEC的面积为△ABC面积的2倍,即可求得四边形的面积.
    【详解】
    解:∵△ABC沿直线AB向右平移后到达△BDE的位置,
    ∴AB=BD,BC∥DE且BC=DE,
    ∴四边形BDEC是平行四边形,
    ∵平行四边形BDEC和△ABC等底等高,
    ∴,
    ∴S四边形ACED=
    故选:A.
    本题考查了平移的性质和平行四边形的判定,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
    5、A
    【解析】
    本题可先求出a的值,再代入方差的公式即可.
    【详解】
    ∵3、6、a、4、2的平均数是5,
    ∴a=10,
    ∴方差.
    故选A.
    本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
    6、C
    【解析】
    根据题意,可以列出相应的分式方程,本题得以解决.
    【详解】
    解:由题意可得,,
    故选:C.
    本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.
    7、B
    【解析】
    分别将点,代入即可计算解答.
    【详解】
    解:分别将点,代入,
    得:,解得,
    故答案为:B.
    本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.
    8、C
    【解析】
    由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′=,于是得到结论.
    【详解】
    解:∵AD′=AD=2,
    AO=AB=1,
    OD′=,
    ∵C′D′=2,C′D′∥AB,
    ∴C′(2,),
    故选D.
    本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、175°
    【解析】
    如图所示,∵∠ADC、∠BCD的平分线交于点O1,
    ∴∠O1DC+∠O1CD=(∠ADC+∠DCB),
    ∵∠O1DC、∠O1CD的平分线交于点O2,
    ∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),
    同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),
    由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),
    ∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),
    又∵四边形ABCD中,∠DAB+∠ABC=200°,
    ∴∠ADC+∠DCB=160°,
    ∴∠CO5D=180°﹣×160°=180°﹣5°=175°,
    故答案为175°.
    10、.
    【解析】
    如图,取AC的中点E,连接OE、DE、OD,由OD≤OE+DE,可得当O、D、E三点共线时,点D到点O的距离最大,再根据已知条件,结合三角形的中位线定理及直角三角形斜边中线的性质即可求得OD的最大值.
    【详解】
    如图,取AC的中点E,连接OE、DE、OD,
    ∵OD≤OE+DE,
    ∴当O、D、E三点共线时,点D到点O的距离最大,
    ∵∠ACB = 90°,AC = BC,AB =5,
    ∴AC=BC=
    ∵点E为AC的中点,点D为AB的中点,
    ∴DE为△ABC的中位线,
    ∴DE=BC=;
    在Rt△ABC中,点E为AC的中点,
    ∴OE=AC=;
    ∴OD的最大值为:OD+OE=.
    故答案为:.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质、三角形的中位线定理及勾股定理等知识点,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.
    11、1
    【解析】
    由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.
    【详解】
    ∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.
    ∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.
    故答案为:1.
    本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.
    12、众数
    【解析】
    平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
    【详解】
    由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
    故答案为众数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    13、2 或9−3.
    【解析】
    分两种情况考虑:B′在横对称轴上与B′在竖对称轴上,分别求出BF的长即可.
    【详解】
    当B′在横对称轴上,此时AE=EB=3,如图1所示,
    由折叠可得△ABF≌△AB′F
    ∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
    ∴∠B′MF=∠B′FM,
    ∴B′M=B′F,
    ∵EB′∥BF,且E为AB中点,
    ∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
    ∴EM=BF,
    设BF=x,则有B′M=B′F=BF=x,EM=x,即EB′=x,
    在Rt△AEB′中,根据勾股定理得:3 +(x) =6,
    解得:x=2 ,即BF=2;
    当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
    设BF=x,B′N=y,则有FN=4−x,
    在Rt△FNB′中,根据勾股定理得:y+(4−x) =x,
    ∵∠AB′F=90°,
    ∴∠AB′M+∠NB′F=90°,
    ∵∠B′FN+∠NB′F=90°,
    ∴∠B′FN=∠AB′M,
    ∵∠AMB′=∠B′NF=90°,
    ∴△AMB′∽△B′NF,
    ∴ ,即,
    ∴y= x,
    ∴(x) +(4−x) =x,
    解得x=9+3 ,x=9−3,
    ∵9+3>4,舍去,
    ∴x=9−3
    所以BF的长为2或9−3,
    故答案为:2 或9−3.
    此题考查翻折变换(折叠问题),解题关键在于作辅助线
    三、解答题(本大题共5个小题,共48分)
    14、 (1)5;(2)6.
    【解析】
    (1) 设,则,,由勾股定理得得,,求出,可得(2)先求BE,BF,再根据,可得结果.
    【详解】
    解:设,则,,
    由勾股定理得得,,解得,,即,

    ,,

    ,,


    本题考核知识点:正方形,勾股定理. 解题关键点:运用折叠的性质得到边相等.
    15、(1)A(4,0)、B(0,2)
    (2)当0(3)当t=2秒时△COM≌△AOB,此时M(2,0)
    【解析】
    (1)根据一次函数与x轴,y轴的交点坐标特点,即将x=0时;当y=0时代入函数解析式,即可求得A、B点的坐标.
    (2)根据S△OCM=×OC·OM代值即可求得S与M的移动时间t之间的函数关系式,再根据M在线段OA上以每秒1个单位运动,且OA=4,即可求得t的取值范围
    (3)根据在△COM和△AOB,已有OA=OC,∠AOB=∠COM,M在线段OA上,故可知OB=OM=2时,△COM≌△AOB,进而即可解题.
    【详解】
    解:(1)对于直线AB:
    当x=0时,y=2;当y=0时,x=4
    则A、B两点的坐标分别为A(4,0)、B(0,2)
    (2)∵C(0,4),A(4,0)
    ∴OC=OA=4,
    故M点在0(3)∵当M在OA上,OA=OC
    ∴OB=OM=2时,△COM≌△AOB.
    ∴AM=OA-OM=4-2=2
    ∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间t=2秒钟,此时M(2,0),
    本题考查了一次函数求坐标,一次函数与三角形综合应用,解本题的关键是掌握动点M的运动时间及运动轨迹,从而解题.
    16、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.
    【解析】
    (1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;
    (2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.
    【详解】
    解:
    (1)设点M到BC的距离为h,
    由S△ABC=S△ABM+S△BCM,
    即 ,
    ∴h=,
    ①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:
    S=(5﹣t)×,即S=﹣ (0≤t<5);
    ②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:
    S= [5﹣(10﹣t)]×,即S=t-(5<t≤10);
    (2)存在①当MB=MP时,
    ∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,
    ∴PH=BH,即3﹣t=2,
    ∴t=1;
    ②当BM=BP时,即5﹣t= ,

    综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.
    此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算
    17、1.
    【解析】
    先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.
    【详解】
    解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
    ∴BC'=AB=3,CF=C'F
    在Rt△BC'F中,C'F2=BF2+C'B2,
    ∴CF2=(9-CF)2+9
    ∴CF=5
    ∴BF=1.
    本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.
    18、(1)m≠-1;(1)y=-x1+5x-6;(3)点P(,-)或(1,0).
    【解析】
    (1)由于抛物线与x轴有两个不同的交点,可令y=0,则所得方程的根的判别式△>0,可据此求出m的取值范围.
    (1)根据已知直线的解析式,可得到D点的坐标;根据抛物线的解析式,可用m表示出A、B的坐标,即可得到AD、BD的长,代入AD×BD=5,即可求得m的值,从而确定抛物线的解析式.
    (3)直线PA分△ACD的面积为1:4两部分,即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),即可求解.
    【详解】
    解:(1)∵抛物线与x轴有两个不同的交点,
    ∴△=(m-4)1+11(m-1)=m1+4m+4=(m+1)1>0,
    ∴m≠-1.
    (1)∵y=-x1-(m-4)x+3(m-1)=-(x-3)(x+m-1),
    ∴抛物线与x轴的两个交点为:(3,0),(1-m,0);
    则:D(0,-1),
    则有:AD×BD=,
    解得:m=1(舍去)或-1,
    ∴m=-1,
    抛物线的表达式为:y=-x1+5x-6①;
    (3)存在,理由:
    如图所示,点C(0,-6),点D(0,-1),点A(1,0),
    直线PA分△ACD的面积为1:4两部分,
    即DH:HC=1:4或4:1,则点H(0,-1)或(0,-5),
    将点H、A的坐标代入一次函数表达式并解得:
    直线HA的表达式为:y=x-1或y=x-5②,
    联立①②并解得:x=或1,
    故点P(,-)或(1,0).
    本题考查的是二次函数综合运用,涉及到一次函数、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3或7
    【解析】
    分两种情况:
    (1)当AE交BC于点E时;
    在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC
    ∴∠AEB=∠EAD,
    ∵∠DAB的平分线交BC于E,
    ∴∠AEB=∠BAE,
    ∴∠AEB=∠BAE,∴AB=BE,
    设AD=x,z则BE=x-2=5
    ∴AD=5+2=7cm,
    (2) 当AE交BC于点E,交CD于点F
    ∵ABCD为平行四边形,
    ∴AB=DC=5cm,AD=BC,AD∥BC.
    ∴∠E=∠EAD,
    又∵BE平分∠BAD,
    ∴∠EAD=∠EAB,
    ∴∠EAB=∠E,
    ∴BC+CE=AB=5,
    ∴AD=BC=5−2=3(cm).故答案为3或7
    点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.
    20、①③④
    【解析】
    首先连接CF,由等腰直角三角形的性质可得:,则证得∠DCF=∠B,∠DFC=∠EFB,然后可证得:△DCF≌△EBF,由全等三角形的性质可得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.问题得解.
    【详解】
    解:连接CF,
    ∵AC=BC,∠ACB=90°,点F是AB中点,
    ∴∠DCF=∠B=45°,
    ∵∠DFE=90°,
    ∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
    ∴∠DFC=∠EFB,
    ∴△DCF≌△EBF,
    ∴CD=BE,故①正确;
    ∴DF=EF,
    ∴△DFE是等腰直角三角形,故③正确;
    ∴S△DCF=S△BEF,
    ∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正确.
    若EF⊥BC时,则可得:四边形CDFE是矩形,
    ∵DF=EF,
    ∴四边形CDFE是正方形,故②错误.
    ∴结论中始终正确的有①③④.
    故答案为:①③④.
    此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.
    21、1
    【解析】
    先解分式方程得x=,由分式方程有正整数解,得出a+1=4,或a+1=1,且a≠0,解出a的值,最后根据a为非负整数即可得出答案.
    【详解】
    解:方程两边同时乘以x﹣1,得:
    3﹣ax=3+1(x﹣1),
    解得x=,
    ∵是正整数,且≠1,
    ∴a+1=4,或a+1=1,且a≠0,
    a=1或a=-1(不符合题意,舍去)
    ∴非负整数a的值为:1,
    故答案为:1.
    本题考查了解分式方程,注意不要漏掉分母不能为零的情况.
    22、
    【解析】
    利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
    【详解】
    正方形的边长为1,,,
    ,,,

    则,
    同理可得:,
    故正方形的边长是:,
    则正方形的边长为:,
    故答案为:.
    此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
    23、1:3
    【解析】
    试题解析:设平行四边形的面积为1,
    ∵四边形ABCD是平行四边形,

    又∵M是的AB的中点,


    ∴上的高线与上的高线比为


    S阴影面积
    则阴影部分的面积与▱ABCD的面积比为.
    故填空答案:.
    二、解答题(本大题共3个小题,共30分)
    24、(1)作图见解析 (2)作图见解析 (3)作图见解析
    【解析】
    (1)根据中心对称的性质作图即可.
    (2)根据旋转的性质作图即可.
    (3)根据三角形面积公式作图即可.
    【详解】
    (1)如图所示,即为所求.
    (2)如图所示,即为所求.
    (3)如图所示,直线CD即为所求.
    本题考查了方格作图的问题,掌握中心对称的性质、旋转的性质、三角形面积公式是解题的关键.
    25、(1)见解析;(2)见解析,C2(﹣3,﹣4)
    【解析】
    (1)根据可以得到平移方式,进而分别作出A,B,C的对应点A1,B1,C1即可.
    (2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
    【详解】
    解:(1)如图,△A1B1C1即为所求.
    (2)△A2B2C2即为所求. C2(﹣3,﹣4).
    本题主要考查图形的平移及旋转,准确的找到平移或旋转后的对应点是解题的关键.
    26、 (1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;
    (2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.
    【解析】
    试题分析:
    (1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;
    (2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;
    试题解析:
    (1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得: ,解得: ,
    ∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:;
    (2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,
    由图可得:,
    由 可得: ,
    ∴图中两函数图象的交点坐标为(2,1.5),
    又∵,
    ∴结合图象可得:
    当时,李老师用“手机支付”更合算;
    当时,李老师选择两种支付分式花费一样多;
    当时,李老师选择“会员支付”更合算.
    点睛:本题是一道一次函数的实际问题,解题时有两个要点:(1)由图中所得信息,求出两个函数的解析式;(2)由两函数的解析式组成方程组求得两函数图象的交点坐标,结合两函数图象的位置关系即可得到第2问的答案.
    题号





    总分
    得分
    批阅人
    尺码/厘米
    22
    22.5
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    2
    3
    11
    8
    6
    4
    相关试卷

    2024年湖北省襄阳市枣阳市徐寨中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年湖北省襄阳市枣阳市徐寨中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省襄阳市枣阳市太平三中学数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年湖北省襄阳市枣阳市太平三中学数学九年级第一学期开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省襄阳市襄州区龙王中学数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份2024年湖北省襄阳市襄州区龙王中学数学九年级第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map