2024年湖北省黄石市白沙片区九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在学习平行四边形时,数学兴趣学习小组设计并组织了“生活中的平行四边形”比赛,全班同学的比赛结果统计如下表所示,则得分的众数和中位数分别为( )
A.70分,70分B.80分,80分
C.70分,80分D.80分,70分
2、(4分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有( )
A.1个
B.2个
C.3个
D.4个
3、(4分)下列二次根式能与合并为一项的是( )
A.B.C.D.
4、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.
正确的个数是 ( )
A.2个B.3个C.4个D.5个
5、(4分)某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程( )
A.B.
C.D.
6、(4分)若样本x1+1,x2+1,…,xn+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,xn+2,下列结论正确的是( )
A.平均数为10,方差为2B.平均数为11,方差为3
C.平均数为11,方差为2D.平均数为12,方差为4
7、(4分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是 ( )
A.19%B.20%C.21%D.22%
8、(4分)若代数式有意义,则实数x的取值范围是( )
A.x≥1B.x≥2C.x>1D.x>2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
10、(4分)如图,在中,,,的面积为8,则四边形的面积为______.
11、(4分)已知(﹣1,y1)(﹣2,y2)(, y3)都在反比例函数y=﹣的图象上,则y1 、y2 、 y3的大小关系是________ .
12、(4分)已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.
13、(4分)如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
15、(8分)计算:
(1);
(2).
16、(8分)如图,矩形OABC的顶点A,C在x,y轴正半轴上,反比例函数过OB的中点D,与BC,AB交于M,N,且已知D(m,2),N(8,n).
(1)求反比例函数的解析式;
(2)若将矩形一角折叠,使点O与点M重合,折痕为PQ,求点P的坐标;
(3)如图2,若将沿OM向左翻折,得到菱形OQMR,将该菱形沿射线OB以每秒个单位向上平移t秒.
① 用t的代数式表示和的坐标;
② 要使该菱形始终与反比例函数图像有交点,求t的取值范围.
17、(10分)已知,求代数式的值。
18、(10分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,四边形是菱形。若点A的坐标是,点的坐标是__________.
20、(4分)函数是y关于x的正比例函数,则______.
21、(4分)如果是关于的方程的增根,那么实数的值为__________
22、(4分)根据图中的程序,当输入数值﹣2时,输出数值为a;若在该程序中继续输入数值a时,输出数值为_____.
23、(4分)如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点A顺时针旋转得到△ADE(其中点B恰好落在AC延长线上点D处,点C落在点E处),连接BD,则四边形AEDB的面积为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.
25、(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.
(1)求出日销量y(件)与销售价x(元)的函数关系式;
(2)求销售定价为30元时,每日的销售利润.
26、(12分)(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形,,,则拼得的四边形的周长是_____.
(操作发现)将图①中的沿着射线方向平移,连结、、、,如图②.当的平移距离是的长度时,求四边形的周长.
(操作探究)将图②中的继续沿着射线方向平移,其它条件不变,当四边形是菱形时,将四边形沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
【详解】
解:∵70分的有12人,人数最多,
∴众数为70分;
处于中间位置的数为第20、21两个数,都为80分,中位数为80分.
故选:C.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
2、C
【解析】
根据平行四边形的判定定理可知①②③可以判定四边形ABCD是平行四边形.
故选C.
3、A
【解析】
先根据二次根式的性质把化为最简二次根式,然后再逐项判断找出其同类二次根式即可.
【详解】
解:.
A、与是同类二次根式,能合并为一项,所以本选项符合题意;
B、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
C、与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
D、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意.
故选:A.
本题考查了二次根式的性质和同类二次根式的定义,属于基本知识题型,熟知同类二次根式的定义、熟练掌握二次根式的性质是解题的关键.
4、B
【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.
【详解】
①∵∠ACB=90°,DE⊥BC,
∴∠ACD=∠CDE=90°,
∴AC∥DE,
∵CE∥AD,
∴四边形ACED是平行四边形,
所以①正确;
②∵D是BC的中点,DE⊥BC,
∴EC=EB,
∴△BCE是等腰三角形,
所以②正确;
③∵AC=2,∠ADC=30°,
∴AD=4,CD=2,
∵四边形ACED是平行四边形,
∴CE=AD=4,
∵CE=EB,
∴EB=4,DB=2,
∴CB=4,
∴AB=,
∴四边形ACEB的周长是10+2;
所以③正确;
④四边形ACEB的面积: ×2×4+×4×2=8,
所以④错误,
故选:C.
考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.
5、C
【解析】
根据题意,可以列出相应的分式方程,本题得以解决.
【详解】
解:由题意可得,,
故选:C.
本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.
6、C
【解析】
分析:利用样本的平均数和方差的公式计算,即可得到结果.
详解:因为样本的平均数是,方差为,
∴,即,
方差
则 ,样本的方差为,故选C.
点睛:本题主要考查了数据的平均数与方差的计算,其中熟记样本数据的平均数和方差的公式是解答的关键,着重考查了推理与运算能力.
7、B
【解析】
试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.
设这两年平均每年绿地面积的增长率是x,由题意得
(1+x)2=1+44%
解得x1=0.2,x2=-2.2(舍)
故选B.
考点:一元二次方程的应用
点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.
8、B
【解析】
根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.
【详解】
由题意得
,
解得:x≥2,
故选B.
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7.2
【解析】
试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵MD⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四边形ADME是矩形,
∴DE=AM,
当AM⊥BC时,AM的长最短,
根据三角形的面积公式得:AB×AC=BC×AM,
∴6×1=10AM,
AM=4.1(cm),
即DE的最小值是4.1cm.
故答案为4.1.
考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
10、2
【解析】
根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.
【详解】
解:∵DE∥BC,,
∴△ADE∽△ABC,,
∴=( )2=,
∵△ADE的面积为8,
∴S△ABC=1.
S四边形DBCE=S△ABC-S△ADE=1-8=2,
故答案为:2.
本题考查相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=1是解题关键.
11、
【解析】
先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.
【详解】
∵反比例函数y=−2x中,k=−2<0,
∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大。
∵−2<−1<0,12>0,
∴点A(−2,y2),B(−1,y1)在第二象限,点C(12,y3)在第四象限,
∴y3
12、2<a<1.
【解析】
先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.
【详解】
当x=1时,y=k(1﹣1)+2=2,
即一次函数过点(1,2),
∵k>0,
∴一次函数的图象必过一、三象限,
把y=2代入y=,得x=2,
观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,
∴2<a<1,
故答案为:2<a<1.
本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.
13、
【解析】
根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.
【详解】
解:∵当时,随着的增大而增大,
∴反比例函数图象在第四象限有一支,
∴,解得,
故答案为:.
本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
三、解答题(本大题共5个小题,共48分)
14、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
【解析】
解:(1)当1≤x≤8时,每平方米的售价应为:
y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
当9≤x≤23时,每平方米的售价应为:
y=4000+(x﹣8)×50=50x+3600(元/平方米).
∴
(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
当W1>W2时,即485760﹣a>475200,
解得:0<a<10560,
当W1<W2时,即485760﹣a<475200,
解得:a>10560,
∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
15、(1)5;(2)6+2
【解析】
(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算.
【详解】
解:(1)原式=2+4-
=5;
(2)原式=2+2+3-(2-3)
=5+2+1
=6+2.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.利用乘法公式计算是解决(2)小题的关键.
16、(1);(2);(3)①;;②
【解析】
(1)由题意得OA=8,因为D为OB的中点,得出D(4,2),代入反比例函数的解析式可得;
(2)求出M点的坐标,再利用勾股定理求出OP的长,可得点P坐标;
(3)①过点O′作O′T⊥x轴,垂足为T,可得△OO′T∽△OBA,进而可表示的坐标,利用勾股定理求出CR,可表示的坐标;
②把R′(2t-3,t+4)代入反比例函数的解析式解答即可.
【详解】
解:(1)∵N(8,n),四边形OABC是矩形,
∴OA=8,
∵D为OB的中点,
∴D(4,2),
∴2=,则k=8,
∴y=;
(2)∵D(4,2),
∴点M纵坐标为4,
∴4=,则x=2,
∴M(2,4),
设OP=x,则MP=x,CP=4-x,CM=2,由勾股定理得:(4-x)2+22=x2,
解得:x=,即OP=,
∴P(0,);
(3)①过点O′作O′T⊥x轴,垂足为T.
可得△OO′T∽△OBA,
∵,
∴=,
∵OO′=,
∴OT=2t,O′T=t,
∴O′(2t,t);
设CR=x,则OR=RM=x+2,
∴x2+42=(x+2)2,解得x=3,即CR=3,
∴R′(2t-3,t+4);
②∵R′(2t-3,t+4),
根据题意得:t+4=,
化简得:2t2+5t-20=0,
解得:或(舍去),
本题主要考查的是反比例函数的综合应用,解答本题主要应用了矩形的性质、勾股定理、相似三角形的判定和性质,求得CR的长是解题的关键.
17、
【解析】
把x的值直接代入,再根据乘法公式进行计算即可.
【详解】
解:当时,
此题主要考查整式的运算,解题的关键是熟知整式的运算公式.
18、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.
【解析】
(1)延长AO至A1,A1O=AO, 延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考核知识点:图形旋转,中心对称和点的坐标,平行四边形判定. 解题关键点:熟记关于原点对称的点的坐标关系,掌握平行四边形的判定定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
作AD⊥y轴于点D,由勾股定理求出OA的长,结合四边形是菱形可求出点C的坐标.
【详解】
作AD⊥y轴于点D.
∵点A的坐标是,
∴AD=1,OD=,
∴,
∵四边形是菱形,
∴AC=OA=2,
∴CD=1+2=3,
∴C(3, ).
故答案为:C(3, )
本题考查了菱形的性质,勾股定理以及图形与坐标,根据勾股定理求出OA的长是解答本题的关键.
20、1
【解析】
试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.
考点:正比例函数
21、1
【解析】
分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.
【详解】
去分母得:x+2=k+x2-1,
把x=2代入得:k=1,
故答案为:1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
22、8 .
【解析】
观察图形我们可以得出x和y的关系式为:是x≥1时关系式为y=x+5,当x<1是y=−x+5,然后将x=-2代入y=−x+5,求出y值即a值,再把a值代入关系式即可求出结果.
【详解】
当x=-2时,
∵x=−2<1,
∴y=a=−x+5=6;
当x=6时,.
∵x=6≥1,
∴y=x+5=8.
故答案为:8.
本题考查了代数式求值,掌握该求值方法是解答本题的关键.
23、
【解析】
通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.
【详解】
∵在△ABC中,∠C=90°,AC=4,BC=3,
∴AB=5,
∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AD=AB=5,
∴CD=AD−AC=1,
∴四边形AEDB的面积为,
故答案为.
本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.
【解析】
(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;
(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;
(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.
【详解】
(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;
(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);
(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.
本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
25、 (1) y=﹣x+1;(2)200元
【解析】
(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.
(2)把x=30代入函数式求y,根据:(售价-进价)×销售量=利润,求解.
【详解】
解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).
则
解得
即一次函数解析式为y=﹣x+1.
(2)当x=30时,每日的销售量为y=﹣30+1=10(件)
每日所获销售利润为(30﹣10)×10=200(元)
本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.
26、【问题情境】16;【操作发现】6+2;【操作探究】20或1.
【解析】
【问题情境】
首先由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°,然后根据勾股定理,可得AB,即可求得四边形ABCD的周长;
【操作发现】
首先由平移,得AE=CF=3,DE=BF,再根据平行,即可判定四边形AECF是平行四边形,然后根据勾股定理,可得AF,即可求得四边形AECF的周长;
【操作探究】
首先由平移,得当点E与点F重合时,四边形ABCD为菱形,得出其对角线的长,沿对角线剪开的三角形组成的矩形有两种情况:以6为长,4为宽的矩形和以3为宽,8为长的矩形,即可求得其周长.
【详解】
由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°
又∵,,
∴根据勾股定理,可得
∴四边形的周长是
故答案为16.
由平移,得AE=CF=3,DE=BF.
∵AE∥CF,
∴四边形AECF是平行四边形.
∵BE=DF=4,
∴EF=DE=2.
在Rt△AEF中,∠AEF=90°,
由勾股定理,得AF== .
∴四边形AECF的周长为2AE+2AF=6+2.
由平移,得当点E与点F重合时,四边形ABCD为菱形,AE=CE=3,BE=DE=4,沿对角线剪开的三角形组成的矩形有两种情况:
①以6为长,4为宽的矩形,其周长为;
②以3为宽,8为长的矩形,其周长为.
故答案为20或1.
此题主要考查根据平移的特征,矩形和菱形的性质进行求解,熟练运用,即可解题.
题号
一
二
三
四
五
总分
得分
批阅人
x(元)
15
20
25
……
y(件)
25
20
15
……
2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】: 这是一份2024-2025学年湖北省黄石市富池片区数学九上开学检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖北省黄石市白沙片区2023-2024学年数学九上期末统考模拟试题含答案: 这是一份湖北省黄石市白沙片区2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了某人沿着坡度为1等内容,欢迎下载使用。
湖北省黄石市白沙片区2023-2024学年数学八年级第一学期期末调研模拟试题含答案: 这是一份湖北省黄石市白沙片区2023-2024学年数学八年级第一学期期末调研模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。