|试卷下载
搜索
    上传资料 赚现金
    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】01
    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】02
    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】

    展开
    这是一份2024年湖北省黄石大冶市数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是( )
    A.①②B.②④C.①③D.②③
    2、(4分)已知直线y=kx+b经过一、二、三象限,则直线y=bx-k-2的图象只能是( )
    A.B.C.D.
    3、(4分)下列计算,正确的是( )
    A.B.
    C.D.
    4、(4分)小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是
    A.B.C.D.
    5、(4分)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为( )
    A.20B.24C.25D.26
    6、(4分)如果y=+2,那么(﹣x)y的值为( )
    A.1B.﹣1C.±1D.0
    7、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    8、(4分)如图,▱ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是( )
    A.18B.10C.9D.8
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知为分式方程,有增根,则_____.
    10、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    11、(4分)因式分解:x2﹣x=______.
    12、(4分)在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为_____.
    13、(4分)如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,,,直线与矩形ABCD的边有公共点,则实数b的取值范围是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)解分式方程:
    (2)解不等式组,并把解集在数轴上表示出来.
    15、(8分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).
    (1)求AB的长;
    (2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
    ①若M是PA的中点,求MH的长;
    ②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
    16、(8分)在平面直角坐标系xOy中,已知一次函数的图象与x轴交于点,与轴交于点.
    (1)求,两点的坐标;
    (2)在给定的坐标系中画出该函数的图象;
    (3)点M(1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.
    17、(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
    (1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
    (2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
    18、(10分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.
    (1)如图1,求点的坐标;
    (2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);
    (3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
    20、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
    21、(4分)为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:
    某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.
    22、(4分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
    23、(4分)二次根式有意义的条件是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.
    25、(10分)小明和小亮两人从甲地出发,沿相同的线路跑向乙地,小明先跑一段路程后,小亮开始出发,当小亮超过小明150米时,小亮停在此地等候小明,两人相遇后,小亮和小明一起以小明原来的速度跑向乙地,如图是小明、小亮两人在跑步的全过程中经过的路程(米)与小明出发的时间(秒)的函数图象,请根据题意解答下列问题.
    (1)在跑步的全过程中,小明共跑了________米,小明的速度为________米/秒;
    (2)求小亮跑步的速度及小亮在途中等候小明的时间;
    (3)求小亮出发多长时间第一次与小明相遇?
    26、(12分)先化简,再求值:,在﹣1、0、1、2 四个数中选一个合适的代入求值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.
    【详解】
    A、∵四边形ABCD是平行四边形,
    当①AB=BC时,平行四边形ABCD是菱形,
    当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
    B、∵四边形ABCD是平行四边形,
    ∴当②∠ABC=90°时,平行四边形ABCD是矩形,
    当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
    C、∵四边形ABCD是平行四边形,
    当①AB=BC时,平行四边形ABCD是菱形,
    当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
    D、∵四边形ABCD是平行四边形,
    ∴当②∠ABC=90°时,平行四边形ABCD是矩形,
    当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意.
    故选D.
    此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.
    2、C
    【解析】
    由直线y=kx+b经过一、二、三象限可得出k>0,b>0,进而可得出−k−2<0,再利用一次函数图象与系数的关系可得出直线y=bx−k−2的图象经过第一、三、四象限.
    【详解】
    解:∵直线y=kx+b经过一、二、三象限,
    ∴k>0,b>0,
    ∴−k−2<0,
    ∴直线y=bx−k−2的图象经过第一、三、四象限.
    故选:C.
    本题考查了一次函数图象与系数的关系,牢记“k>0,b>0时,y=kx+b的图象在一、二、三象限;k>0,b<0时,y=kx+b的图象在一、三、四象限”是解题的关键.
    3、C
    【解析】
    根据二次根式的运算法则,化简各式进行.
    【详解】
    A、+,故A选项错误;
    B、-4<0,-9<0,没有意义,故B选项错误;
    C、,故C选项正确;
    D、,故D选项错误.
    故选:C.
    此题考查二次根式的性质与化简,解题关键在于掌握运算法则
    4、D
    【解析】
    首先将各选项代入计算看是否在直线上即可.
    【详解】
    A 选项,当 代入 故在直线上.
    B 选项,当 代入 故在直线上.
    C选项,当 代入 故在直线上.
    D选项,当 代入 故不在直线上.
    故选D.
    本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.
    5、D
    【解析】
    由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=(AB+EH)×BE=(8+5)×4=1.故选D.
    6、A
    【解析】
    根据二次根式的被开方数是非负数建立不等式组即可求出x的值,进而求出y值,最后代入即可求出答案.
    【详解】
    解:∵y=+2,
    ∴,
    解得x=1,
    ∴y=2,
    ∴(﹣x)y=(﹣1)2=1.
    故选A.
    本题考查了二次根式的性质.牢记二次根式的被开方数是非负数这一条件是解题的关键.
    7、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    8、C
    【解析】
    首先判断OE是△ACD的中位线,再由O,E分别为AC,AD的中点,得出,DE=AD=BC,DO=BD,AO=CO,再由△BCD的周长为18,可得OE+OD+ED=9,这样即可求出△DEO的周长.
    【详解】
    解:∵E为AD中点,四边形ABCD是平行四边形,
    ∴DE=AD=BC,DO=BD,AO=CO,
    ∴OE=CD,
    ∵△BCD的周长为18,
    ∴BD+DC+BC=18,
    ∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,
    故选:C.
    考核知识点:本题考查了平行四边形的性质及三角形的中位线定理,解答本题注意掌握中位线的性质及平行四边形对边相等、对角线互相平分的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    去分母得,根据有增根即可求出k的值.
    【详解】
    去分母得,

    当时,
    为增根,
    故答案为:1.
    本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.
    10、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    11、x(x﹣1)
    【解析】分析:提取公因式x即可.
    详解:x2−x=x(x−1).
    故答案为:x(x−1).
    点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
    12、2
    【解析】
    根据正方形的面积公式可求正方形面积.
    【详解】
    正方形面积==2
    故答案为2.
    本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.
    13、−1≤b≤1
    【解析】
    由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.
    【详解】
    解:∵AB=1,AD=1,
    ∴点A的坐标为(−1,0),点C的坐标为(1,1).
    当直线y=−x+b过点A时,0=1+b,
    解得:b=−1;
    当直线y=−x+b过点C时,1=−1+b,
    解得:b=1.
    ∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.
    故答案为:−1≤b≤1.
    本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)无解;(2),见解析.
    【解析】
    (1)方程去分母得:,移项、合并同类项、系数化为1,并检验可得;
    (2)分别求出每个不等式的解集,再确定其公共部分即可得.
    【详解】
    解:(1)去分母得:,
    解得:,
    经检验是增根,分式方程无解;
    (2),
    解①得,
    解②得,
    ∴,
    本题主要考查解分式方程和不等式组的基本能力,严格遵循解方程或不等式的基本步骤是关键.
    15、 (1)1;(2);.
    【解析】
    试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;
    (2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,
    由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.
    ②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.
    试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,
    在Rt△ADP中,AD2+DP2=AP2,
    即82+(x-4)2=x2,
    解得:x=1,
    即AB=1.
    (2)①如图2,过点A作AG⊥PB于点G,
    由(1)中的结论可得:PC=4,BC=8,∠C=90°,
    ∴PB=,
    ∵AP=AB,
    ∴PG=BG=PB=,
    在Rt△AGP中,AG=,
    ∵AG⊥PB,MH⊥PB,
    ∴MH∥AG,
    ∵M是PA的中点,
    ∴H是PG的中点,
    ∴MH=AG=.
    ②当点M、N在移动过程中,线段FH的长度是不发生变化;
    作MQ∥AN,交PB于点Q,如图3,
    ∵AP=AB,MQ∥AN,
    ∴∠APB=∠ABP=∠MQP.
    ∴MP=MQ,
    ∵BN=PM,
    ∴BN=QM.
    ∵MP=MQ,MH⊥PQ,
    ∴EQ=PQ.
    ∵MQ∥AN,
    ∴∠QMF=∠BNF,
    在△MFQ和△NFB中,

    ∴△MFQ≌△NFB(AAS).
    ∴QF=QB,
    ∴HF=HQ+QF=PQ+QB=PB=.
    ∴当点M、N在移动过程中,线段FH的长度是不发生变化,长度为.
    考点:四边形综合题.
    16、(1)点A的坐标为, 点B的坐标为 (2)图形见解析(3)
    【解析】
    试题分析:令y=0,则x=2;令x=0,则y=1,即可得A,B两点的坐标;(2)连接AB即可得该函数的图象;(3)根据一次函数的性质即可求得结论.
    试题解析:
    (1)令,则;
    令,则.
    ∴点A的坐标为,
    点B的坐标为.
    (2)如图:
    (3)
    17、(1)图形见解析;(2)P点坐标为(,﹣1).
    【解析】
    (1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
    (2)连接A1A2、B1B2,交点即为所求.
    【详解】
    (1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
    (2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).
    本题主要考查作图-旋转变换、平移变换,解题关键是根据旋转变换和平移变换的定义作出变换后的对应点.
    18、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析
    【解析】
    (1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;
    (2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;
    (3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q (p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.
    【详解】
    解:(1)令x=0,y=6,令y=0,x=−2,
    ∴A(−2,0),B(0,6),
    ∴AO=2,CO=6,
    作DL⊥y轴垂足为L点,DI⊥AB垂足为I,
    ∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,
    ∴△DLC≌△AOC(AAS),
    ∴DL=AO=2,
    ∴D的横坐标为2,
    把x=2代入y=3x+6得y=12,
    ∴D(2,12),
    ∴DI=12,
    ∵S△ABD=AB•DI=1,
    ∴AB=8;
    ∵OB=AB−AO=8−2=6,
    ∴B(6,0);
    (2)∵OC=OB=6,
    ∴∠OCB=∠CBO=45°,
    ∵MN=MB,
    ∴设∠MNB=∠MBN=α,
    作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;
    ∴∠NKB=∠MQK=∠MPK=90°,
    ∴四边形MPKQ为矩形,
    ∴NK∥CO,MQ=PK;
    ∵∠KNB=90°−45°=45°,
    ∴∠MNK=45°+α,∠MBQ=45°+α,
    ∴∠MNK=∠MBQ,
    ∵MN=MB,∠NPM=∠MQB=90°,
    ∴△MNP≌△MQB(AAS),
    ∴MP=MQ;
    ∵B(6,0),D(2,12),
    ∴设BD的解析式为y=kx+b(k≠0),
    ∴,解得:k=-3,b=18,
    ∴BD的解析式为y=−3x+18,
    ∵点M的纵坐标为d,
    ∴MQ=MP=d,把y=d代入y=−3x+18得d=−3x+18,
    解得x=,
    ∴OQ=;
    ∵N的横坐标为t,
    ∴OK=t,
    ∴OQ=OK+KQ=t+d,
    ∴=t+d,
    ∴d=;
    (3)作NW⊥AB垂足为W,
    ∴∠NWO=90°,
    ∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,
    ∵∠ACO=∠NAO,
    ∴∠ACN=∠ANC,
    ∴AC=AN,
    又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,
    ∴△ANW≌△CAO(AAS),
    ∴AO=NW=2,
    ∴WB=NW=2,
    ∴OW=OB−WB=6−2=4,
    ∴N(4,2);
    延长NW到Y,使NW=WY,
    ∴△NFW≌△YFW(SAS)
    ∴NF=YF,∠NFW=∠YFW,
    又∵∠HFN=2∠NFO,
    ∴∠HFN=∠YFN,
    作NS⊥YF,
    ∵∠FH⊥NH,
    ∴∠H=∠NSF=90°,
    ∵FN=FN,
    ∴△FHN≌△FSN(AAS),
    ∴SF=FH=,NY=2+2=4,
    设YS=a,FY=FN=a+,
    在Rt△NYS和Rt△FNS中:NS2=NY2−YS2;NS2=FN2−FS2;NY2−YS2=FN2−FS2,
    ∴42−a2=(a+)2-()2,
    解得a=
    ∴FN=;
    在Rt△NWF中WF=,
    ∴FO=OW+WF=4+6=10,
    ∴F(10,0),
    ∴AW=AO+OW=2+4=6,
    ∴AW=FW,
    ∵NW⊥AF,
    ∴NA=NF,
    ∴∠NFA=∠NAF,
    ∵∠ACO=∠NAO,
    ∴∠NFA=∠ACO,
    设GF交y轴于点T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,
    ∴∠CGF=∠COF=90°,
    设FN的解析式为y=px+q (p≠0),把F(10,0)N(4,2)代入y=px+q
    得,解得,
    ∴,
    ∴联立,解得:,
    ∴,
    把G点代入y=mx+3,得,得m=,
    ∴y=x+3,
    令y=0得0=x+3,x=4,
    ∴R(4,0),
    ∴AR=AO+OR=2+4=6,RF=OF−OR=10−4=6,
    ∴AR=RF,
    ∵FE∥AC,
    ∴∠FEG=∠AGE,∠GAF=∠EFA,
    ∴△GRA≌△EFR(AAS),
    ∴EF=AG,
    ∴四边形AGFE为平行四边形,
    ∵∠AGF=180°−∠CGF=180°−90°=90°,
    ∴平行四边形AGFE为矩形.
    本题是一次函数的综合题;灵活应用全等三角形的判定和性质以及勾股定理,熟练掌握平行四边形和矩形的判定,会待定系数法求函数解析式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.
    【详解】
    如图,构造一线三等角,使得.
    ∵a∥c,
    ∴∠1=∠AFD=60°,
    ∴∠2+∠CAF=60°.
    ∵a∥b,
    ∴∠2=∠3,
    ∴∠3+∠CAF=60°.
    ∵∠3+∠4=60°,
    ∴∠4=∠CAF,
    ∵b∥c,
    ∴∠4=∠5,
    ∴∠5=∠CAF,
    又∵AC=BC,∠AFC=∠CGB,
    ∴,
    ∴CG=AF.
    ∵∠ACF=60°,
    ∴DAF=30°,
    ∴DF=AF,
    ∵AF2=AD2+DF2,
    ∴,
    ∴,
    同理可求,
    ∴,
    ∴.
    本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.
    20、>
    【解析】
    根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
    【详解】
    在反比例函数y=中,k=1>0,
    ∴该函数在x<0内y随x的增大而减小.
    ∵x1<x1<0,
    ∴y1>y1.
    故答案为:>.
    本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
    21、1
    【解析】
    根据题意算出5种方案的钱数,故可求解.
    【详解】
    解:连续6天不限次数乘坐地铁有5种方案
    方案①:买一日票6张,费用20×6=120(元)
    方案②:买二日票3张:30×3=90(元)
    方案③:买三日票2张:40×2=1(元)
    方案④:买一日票1张,五日票1张:20+70=120(元)
    方案⑤:买七日票1张:90元
    故方案③费用最低:40×2=1(元)
    故答案为1.
    此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.
    22、m=1.
    【解析】
    分析:若一元二次方程有实根,则根的判别式△=b2﹣1ac≥2,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为2.
    详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=2有实根,
    ∴△=1﹣8(m﹣5)≥2,且m﹣5≠2,
    解得m≤5.5,且m≠5,
    则m的最大整数解是m=1.
    故答案为m=1.
    点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>2,方程有两个不相等的实数根;(2)△=2,方程有两个相等的实数根;(3)△<2方程没有实数根.
    23、
    【解析】
    根据被开方式大于零列式求解即可.
    【详解】
    由题意得
    x-3>0,
    ∴x>3.
    故答案为:x>3.
    本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
    二、解答题(本大题共3个小题,共30分)
    24、证明见解析.
    【解析】
    分析:因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,故OB=OC.
    【解答】证明:在Rt△ABC和Rt△DCB中

    ∴Rt△ABC≌Rt△DCB(HL),
    ∴∠OBC=∠OCB,
    ∴BO=CO.
    点睛:此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
    25、(1)900,1.5;(2)小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;(3)小亮出发150秒时第一次与小明相遇.
    【解析】
    (1)观察图象可知小明共跑了900米,用了600秒,根据路程÷时间=速度,即可求出小明的速度;
    (2)根据图象先求出小亮超过小明150米时,小明所用的时间,然后据此求出小亮的速度,小明赶上小亮时所用的时间-小亮在等候小明前所用的时间=小亮在途中等候小明的时间,据此计算即可;
    (3)设小亮出发t秒时第一次与小明相遇,根据(1)、(2)计算出的小亮和小明的速度列出方程求解即可.
    【详解】
    解:(1)由图象可得,
    在跑步的全过程中,小明共跑了900米,小明的速度为:900÷600=1.5米/秒,
    故答案为900,1.5;
    (2)当x=500时,y=1.5×500=750,
    当小亮超过小明150米时,小明跑的路程为:750﹣150=600(米),此时小明用的时间为:600÷1.5=400(秒),
    故小亮的速度为:750÷(400﹣100)=2.5米/秒,
    小亮在途中等候小明的时间是:500﹣400=100(秒),
    即小亮跑步的速度是2.5米/秒,小亮在途中等候小明的时间是100秒;
    (3)设小亮出发t秒时第一次与小明相遇,
    2.5t=1.5(t+100),
    解得,t=150,
    答:小亮出发150秒时第一次与小明相遇.
    一元一次方程和一次函数在实际生活中的应用是本题的考点,根据题意读懂图象并熟练掌握“路程=速度×时间”这一等量关系,是解题的关键.
    26、1.
    【解析】
    分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.
    详解:原式=

    =
    =3x+10
    当 x=1 时,原式=3×1+10=1.
    点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.
    题号





    总分
    得分
    批阅人
    种类
    一日票
    二日票
    三日票
    五日票
    七日票
    单价(元/张)
    20
    30
    40
    70
    90
    相关试卷

    2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】: 这是一份2024年湖北省大冶市数学九上开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省黄石市大冶市数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖北省黄石市大冶市数学九上开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年湖北省黄石十四中学九上数学开学复习检测试题【含答案】: 这是一份2024-2025学年湖北省黄石十四中学九上数学开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map