2024年黑龙江省鸡东县九年级数学第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等B.若两数相等,则它们的绝对值相等
C.若两个角是45,那么这两个角相等D.两直线平行,同位角相等
2、(4分)如图,点E是菱形ABCD对角线BD上任一点,点F是CD上任一点,连接CE,EF,当,时,的最小值是( )
A.B.10C.D.5
3、(4分)甲、乙、丙、丁四名射击选手,在相同条件下各射靶10次,他们的成绩统计如下表所示,
若要从他们中挑选一位成绩最高且波动较小的选手参加射击比赛,那么一般应选( )
A.甲B.乙C.丙D.丁
4、(4分)如图,在矩形OABC中,点B的坐标是(1,3),则AC的长是( )
A.3B.2C.D.4
5、(4分)如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是
A.24B.20C.12D.6
6、(4分)要使分式有意义,则x应满足( )
A.x≠﹣1B.x≠2C.x≠±1D.x≠﹣1且x≠2
7、(4分)下列变量之间关系中,一个变量是另一个变量的正比例函数的是( )
A.正方形的面积S随着边长x的变化而变化
B.正方形的周长C随着边长x的变化而变化
C.水箱有水10升,以0.5升/分的流量往外放水,剩水量(升)随着放水时问t(分)的变化而变化
D.面积为20的三角形的一边a随着这边上的高h的变化而变化
8、(4分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为( )
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3
C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.
10、(4分)如图,在中,平分,,垂足为点,交于点,为的中点,连结,,,则的长为_____.
11、(4分)如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.
12、(4分)当x≤2时,化简:=________
13、(4分)汽车开始行驶时,油箱中有油40L,如果每小时耗油5L,则油箱内余油量y(L)与行驶时间x(h)的关系式为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.
15、(8分)某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的单价为每个30元,垃圾箱的单价为每个90元,共需购买温馨提示牌和垃圾箱共100个.
(1)若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;
(2)若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举所有购买方案,并说明理由.
16、(8分)知y+3与5x+4成正比例,当x=1时,y=—18,
(1)求y关于x的函数关系。
(2)若点(m,—8)在此图像上,求m的值。
17、(10分)如图,已知直线与交轴于点,,分别交轴于点,,,的表达式分别为,.
(1)求的周长;
(2)求时,的取值范围.
18、(10分)直线L与y=2x+1的交于点A(2,a),与直线y=x+2的交于点B(b,1)
(1)求a,b的值;
(2)求直线l的函数表达式;
(3)求直线L、x轴、直线y=2x+1围成的图形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分式与的最简公分母是_________.
20、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
21、(4分)关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.
22、(4分)如图,在边长为的菱形中,,是边的中点,是对角线上的动点,连接,,则的最小值______.
23、(4分)将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,矩形ABCD中,AB=4,BC=3,以BD为腰作等腰△BDE交DC的延长线于点E,求BE的长.
25、(10分)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.
26、(12分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)直接写出点M的坐标为 ;
(2)求直线MN的函数解析式;
(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先分别写出四个命题的逆命题,根据三角形全等的判定方法对A的逆命题进行判断;根据相反数的绝对值相等对B的逆命题进行判断;根据两个角相等,这两个角可为任意角度可对C的逆命题进行判断;根据平行线的判定定理对D的逆命题进行判断.
【详解】
A. “全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以A选项错误;
B. “若两数相等,则它们的绝对值相等”的逆命题为“若两数的绝对值相等,则这两数相等”,此逆命题为假命题,所以B选项错误;
C. “若两个角是45°,那么这两个角相等”的逆命题为“若两个角相等,你们这两个角是45°”,此逆命题为假命题,所以C选项错误;
D. “两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题,所以D选项正确.
故选D.
此题考查命题与定理,解题关键在于掌握掌握各性质定义.
2、C
【解析】
过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,CE+EF的最小值=AF,根据已知条件得到△ADF是等腰直角三角形,于是得到结论.
【详解】
解:如图,
∵四边形ABCD是菱形,
∴点A与点C关于BD对称,
过A作AF⊥CD交BD于E,则此时,CE+EF的值最小,
∴CE+EF的最小值为AF,
∵∠ABC=45°,
∴∠ADC=∠ABC=45°,
∴△ADF是等腰直角三角形,
∵AD=BC=10,
∴AF=AD=,
故选C.
本题考查了轴对称-最短路线问题,菱形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.
3、B
【解析】
∵乙、丁的平均数都是9.5,乙的方差是4,丁的方差是5.4,
∴S2乙> S2丁,
∴射击成绩最高且波动较小的选手是乙;
故选:B.
4、C
【解析】
根据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.
【详解】
解:连接OB,过B作BM⊥x轴于M,
∵点B的坐标是(1,3),
∴OM=1,BM=3,由勾股定理得:OB=
∵四边形OABC是矩形,
∴AC=OB,
∴AC=,
故选:C.
本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.
5、A
【解析】
根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.
【详解】
解:、F分别是AD,CD边上的中点,即EF是的中位线,
,
则.
故选:A.
本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.
6、D
【解析】
试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.
考点:分式有意义的条件.
7、B
【解析】
先列出各选项中的函数解析式,再根据一次函数的定义,二次函数的定义,正比例函数的定义,反比例函数的定义,进行判断,可得出答案.
【详解】
解:A∵、s=x2 ,
∴s是x的二次函数,故A不符合题意;
B、∵C=4x,
∴C是x的正比例函数,故B符合题意;
C、设剩水量为v(升),
∵v=10-0.5t,
∴v是t的一次函数,故C不符合题意;
D、∵, 即,
∴a是h的反比例函数,故D不符合题意;
故答案为:B
本题主要考查的是正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.
8、D
【解析】
因为y=x2-4x-4=(x-2)2-8,
以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),
所以平移后的抛物线的函数表达式为y=(x+1)2-1.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、35°
【解析】
根据折叠的性质可得∠ECB=∠ECF,CB=CF,根据菱形的性质可得CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,求出等腰三角形DCF的顶角∠DCF,即可求出∠ECF的度数
【详解】
解:在菱形ABCD中,CB=CD,∠B=∠D=70°,∠BCD=180°-∠D=110°,
根据折叠可得:∠ECB=∠ECF,CB=CF,
∴CF=CD
∴∠DCF=180°-70°-70°=40°,
∴∠ECF=(∠BCD-∠DCF)=35°.
故答案为35°.
本题考查图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
10、6.5
【解析】
由条件“BF平分∠ABC,AG⊥BF”可判定三角形ABG是等腰三角形(AB=GB),再由条件“E为AC的中点”,可判定DE是三角形AGB的中位线,由此可得GC=2DE,进而可求出BC的长.
【详解】
∵BF平分∠ABC,AG⊥BF,
∴△ABG是等腰三角形,
∴AB=GB=4cm,
∵BF平分∠ABC,
∴AD=DG,
∵E为AC的中点,
∴DE是△AGB的中位线,
∴DE=CG,
∴CG=2DE=5cm,
∴BC=BG+CG=4+2.5=6.5cm,
故答案为6.5
本题考查三角形的性质,解题关键在于判定三角形ABG是等腰三角形
11、1
【解析】
由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=9cm,CD=AB=6cm,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠ADE,
∴∠EDC=∠DEC,
∴CE=CD=6cm,
∴BE=BC-EC=1cm,
故答案为:1.
本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.
12、2-x
【解析】
,
∵x≤2,
∴原式=2-x.
13、y=40-5x
【解析】
直接利用汽车耗油量结合油箱的容积,进而得出油箱内剩余油量y(L)与行驶时间x(h)的关系式.
【详解】
由题意可得:y=40-5x.
故答案为y=40-5x.
此题主要考查了函数关系式,根据汽车耗油量得出函数关系式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、△BCD是直角三角形
【解析】
首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.
【详解】
△BCD是直角三角形,
理由:在Rt△BAD中,
∵AB=AD=2,
∴BD==,
在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,
∴BD2+CD2=BC2,
△BCD是直角三角形.
此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
15、(1)7800元;(2)购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
【解析】
(1)购买温馨提示牌的费用+购买垃圾箱的费用即为所需的购买费用
(2)温馨提示牌为x个,则垃圾箱为(100-x)个,根据该小区至多安放48个温馨提示牌,且费用不超过6300元,建立不等式组,根据为整数可得到4种购买方案.
【详解】
(1)(元)
答:所需的购买费用为7800元 .
(2)设温馨提示牌为x个,则垃圾箱为(100-x)个,由题意得:
,
解得:
∵为整数
∴
∴购买方案为:温馨提示牌和垃圾箱个数分别为45,55;46,54;47,53;48,1.
本题主要考查一元一次不等式组的应用以及方案问题,读懂题目,找出题目中的不等关系列出不等式是解题的关键.
16、 (1) y=x;
(2) m=.
【解析】
(1)设y+3=k(5x+4),把x=1,y=-18代入求出k的值,进而可得出y与x的函数关系式;
(2)直接把点(m,-8)代入(1)中一次函数的解析式即可.
【详解】
(1)∵y+3与5x+4成正比例,
∴设y+3=k(5x+4),
∵当x=1时,y=−18,
∴−18+3=k(5+4),解得k=,
∴y关于x的函数关系式为: (5x+4)=y+3,即y=x;
(2)∵点(m,−8)在此图象上,
∴−8=m,解得m=.
本题考查一次函数,解题的关键是掌握待定系数法求解析式.
17、(1)的周长;(2)
【解析】
(1)先利用直线、表达式求出点A、B、C坐标,再利用勾股定理求得AB、AC的长,即可求得的周长;
(2)根据函数图象,即可得出.
【详解】
(1)由,当时,,所以点,
由,当时,.所以点,,
所以
由,当时,,所以点,,
根据勾股定理,得:,
所以的周长
(2)时在下方,即A点左侧区域,所以
本题考查利用一次函数图象与坐标轴交点求三角形面积问题,以及函数比较大小问题,熟练掌握求一次函数与x轴y轴交点是解题关键.
18、(1)a=5,b=﹣1;(2)y=x+;(3)直线L、x轴、直线y=2x+1围成的图形的面积为.
【解析】
(1)把A,B的坐标代入解析式即可解答
(2)设直线L的解析式为:y=kx+b,代入A,B的坐标即可
(3)求出直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),即可根据三角形面积公式进行解答
【详解】
(1)把A(2,a)代入y=2x+1得a=2×2+1=5,
故a=5,
把B(b,1)代入y=x+2得,1=b+2,
∴b=﹣1,
(2)设直线L的解析式为:y=kx+b,
把A(2,5),B(﹣1,1)代入得 ,
解得: ,
∴直线l的函数表达式为y=x+ ;
(3)∵直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),
∴直线L、x轴、直线y=2x+1围成的图形的面积=×(﹣+)×5=.
此题考查一次函数中的直线位置关系,解题关键在于把已知点代入解析式
一、填空题(本大题共5个小题,每小题4分,共20分)
19、15bc1
【解析】
试题分析:分式与的最简公分母是15bc1.
故答案为15bc1.
点睛:本题考查了最简公分母的找法,若分母是单项式,一般找最简公分母分三步进行:①找系数,系数取所有分母系数的最小公倍数;②取字母,字母取分母中出现的所有字母;③取指数,指数取同一字母指数的最大值.
20、
【解析】
试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
故答案为.
点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
21、-1
【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.
【详解】
解:将x=1代入方程得:1+3+m﹣1=0,
解得:m=﹣1,
故答案为﹣1.
本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
22、
【解析】
根据在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点,据此可以作对称点,找到最小值.
【详解】
解:连接AE.
∵四边形ABCD为菱形,
∴点C、A关于BD对称,
∴PC=AP,
∴PC+EP=AP+PE,
∴当P在AE与BD的交点时,
AP+PE最小,
∵E是BC边的中点,
∴BE=1,
∵AB=2,B=60°,
∴AE⊥BC,
此时AE最小,为,
最小值为.
本题考查了线段之和的最小值,熟练运用菱形的性质是解题的关键.
23、y=2x
【解析】
根据上加下减,左加右减的法则可得出答案
【详解】
一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度变为:
y=2x﹣3+3=2x
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
二、解答题(本大题共3个小题,共30分)
24、.
【解析】
利用勾股定理求出BD,可得DE=BD=5,在Rt△BCE中,利用勾股定理求出BE即可.
【详解】
解:∵四边形ABCD是矩形,
∴AB=DC=4,∠BCD=90°,
∴DE=BD==5,
∴CE=DE﹣CD=1,
在Rt△BCE中,BE=,
本题考查矩形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、存在;k只能取3,4,5
【解析】
解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.
【详解】
解:解方程组得
∵x大于1,y不大于1从而得不等式组
解之得2<k≤5
又∵k为整数
∴k只能取3,4,5
答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.
此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.
26、(1)(﹣2,0);(2)y=2x+1;(2)y=2x+2
【解析】
(1)由点N(0,1),得出ON=1,再由ON=2OM,求得OM=2,从而得出点M的坐标;
(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
(2)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.
【详解】
(1)∵N(0,1),ON=2OM,∴OM=2,∴M(﹣2,0).
故答案为:(﹣2,0);
(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,1)分别代入上式,得:,解得:k=2,b=1,∴直线MN的函数解析式为:y=2x+1.
(1)把x=﹣1代入y=2x+1,得:y=2×(﹣1)+1=2,即点A(﹣1,2),所以点C(0,2),∴由平移后两直线的k相同可得:平移后的直线为y=2x+2.
本题考查了待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数(环)
9
9.5
9
9.5
方差
3.5
4
4
5.4
2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024年湖北恩施白杨九年级数学第一学期开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年云南省腾冲市数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年云南省腾冲市数学九年级第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省红光农场学校九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年黑龙江省红光农场学校九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。