2024年河南省平顶山市名校数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:
则关于这名学生周阅读所用时间,下列说法正确的是( )
A.中位数是B.众数是C.平均数是D.方差是
2、(4分)如图,在平行四边形中,分别以、为边向外作等边、,延长交于点,点在点、之间,连接,,,则以下四个结论一定正确的是( )
①;②;③④是等边三角形.
A.只有①②B.只有①④C.只有①②③D.①②③④
3、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
A.(1,2)B.(4,2)C.(2,4)D.(2,1)
4、(4分)在函数中,自变量x的取值范围是( )
A.x≠﹣2B.x>﹣2C.x≠0D.x≠2
5、(4分)点关于x轴对称的点的坐标是
A.B.C.D.
6、(4分)如图,在平行四边形中,∠A=40°,则∠B的度数为( )
A.100°B.120°C.140°D.160°
7、(4分)如图,在中,D,E,F分别为BC,AC,AB边的中点,于H,,则DF等于( )
A.4B.8C.12D.16
8、(4分)在下列命题中,是假命题的个数有( )
①如果,那么. ② 两条直线被第三条直线所截,同位角相等
③面积相等的两个三角形全等 ④ 三角形的一个外角等于不相邻的两个内角的和.
A.3个B.2个C.1个D.0个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)观察下列式子:
当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
10、(4分)方程=2的解是_________
11、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
12、(4分)某个“清凉小屋”自动售货机出售三种饮料.三种饮料的单价分别是2元/瓶、3元/瓶、5元/瓶. 工作日期间,每天上货量是固定的,且能全部售出,其中,饮料的数量(单位:瓶)是饮料数量的2倍,饮料的数量(单位:瓶)是饮料数量的2倍. 某个周六,三种饮料的上货量分别比一个工作日的上货量增加了50%,60%,50%,且全部售出. 但是由于软件bug,发生了一起错单(即消费者按某种饮料1瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了403元. 则这个“清凉小屋”自动售货机一个工作日的销售收入是__________元.
13、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读材料,解答问题:
(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是: .
(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:
∵,
(用含的式子表示)
又∵ .
∴
∴
∴ .
(3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.
15、(8分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
求证:四边形DEFG是平行四边形.
16、(8分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).
(1)求关于的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
17、(10分)如图,点为轴负半轴上的一个点,过点作轴的垂线,交函数的图像于点,交函数的图像于点,过点作轴的平行线,交于点,连接.
(1)当点的坐标为(–1,0)时,求的面积;
(2)若,求点的坐标;
(3)连接和.当点的坐标为(,0)时,的面积是否随的值的变化而变化?请说明理由.
18、(10分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在菱形中,已知,,那么__________(结果用向量,的式子表示).
20、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
21、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.
22、(4分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
23、(4分)与最简二次根式是同类二次根式,则a=__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)
25、(10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF
(1)求证:
(2)若,,求的面积.
26、(12分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.
(1)求EF的长;
(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可.
【详解】
这10名学生周阅读所用时间从大到小排列,可得
4、4、4、5、5、5、5、8、8、12,
∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,
∴选项A不正确;
∵这10名学生周阅读所用时间出现次数最多的是5小时,
∴这10名学生周阅读所用时间的众数是5,
∴选项B不正确;
∵(4×3+5×4+8×2+12)÷10=60÷10=6
∴这10名学生周阅读所用时间的平均数是6,
∴选项C不正确;
∵×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,
∴这10名学生周阅读所用时间的方差是6,
∴选项D正确,
故选D.
本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.
2、B
【解析】
根据平行四边形的性质、全等三角形的性质以及判定定理对各项进行判断即可.
【详解】
为平行四边形,
,
,
,
①对.
②
,
,
,
,
②不对
③无特殊角度条件,无法证③
同理,
④,
,,
,
,
,
,
等边,④对,
选①④
故选B.
本题考查了三角形的综合问题,掌握平行四边形的性质、全等三角形的性质以及判定定理是解题的关键.
3、D
【解析】
根据三角形的中位线的性质和点的坐标,解答即可.
【详解】
过N作NE⊥y轴,NF⊥x轴,
∴NE∥x轴,NF∥y轴,
∵点A(0,2),B(4,0),点N为线段AB的中点,
∴NE=2,NF=1,
∴点N的坐标为(2,1),
故选:D.
本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
4、A
【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x+1≠2,即可得答案.
【详解】
根据题意可得x+1≠2;
解得x≠-1.
故选A.
本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为2.
5、A
【解析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.
【详解】
由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,
故选A.
本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
6、C
【解析】
根据平行四边形的性质,即可得出答案.
【详解】
∵平行四边形ABCD,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A=40°,
∴∠B=180°-40°=140°,
故选C.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
7、B
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出AC,再根据三角形中位线定理解答即可.
【详解】
解:∵AH⊥BC,E为AC边的中点,
∴AC=2HE=16,
∵D,F分别为BC,AB边的中点,
∴DF=AC=8,
故选:B.
本题考查的是三角形中位线定理、直角三角形斜边上中线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
8、A
【解析】
两个数的平方相等,则两个数相等或互为相反数;两条直线平行,同位角相等;三角形面积相等,但不一定全等;根据三角形的外角性质得到三角形的一个外角等于与它不相邻的两个内角之和,根据以上结论判断即可.
【详解】
解:①、两个数的平方相等,则两个数相等或互为相反数,例如(-1)2=12,则-1≠1.故错误;
②、只有两直线平行时,同位角相等,故错误;
③、若两个三角形的面积相等,则两个三角形不一定全等.故错误;
④、三角形的一个外角等于与它不相邻的两个内角之和,故正确;
故选:A.
本题主要考查平行线的性质,平方,全等三角形的判定,三角形的外角性质,命题与定理等知识点的理解和掌握,理解这些性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2n,n2﹣1,n2+1.
【解析】
由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
【详解】
解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
∴勾股数a=2n,b=n2﹣1,c=n2+1.
故答案为2n,n2﹣1,n2+1.
考点:勾股数.
10、
【解析】
【分析】方程两边平方可得到整式方程,再解之可得.
【详解】方程两边平方可得
x2-3x=4,
即x2-3x-4=0,解得x1=-1,x2=4
故答案为:
【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.
11、1
【解析】
试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,
∴a2-1a+m=0①,a2-1a-m=0②,
①+②,得2(a2-1a)=0,
∵a>0,
∴a=1.
考点:一元二次方程的解.
12、760
【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;于是可以列方程求出C的数量,进而求出工作日期间一天的销售收入.
【详解】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
工作日期间一天的销售收入为:8x+6x+5x=19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
周六销售收入与工作日期间一天销售收入的差为:29.1x-19x=10.1x元,
由于发生一起错单,收入的差为403元,因此,403加减一瓶饮料的差价一定是10.1的整数倍,
所以这起错单发生在A、B饮料上(A、B一瓶的差价为1元),且是消费者付A饮料的钱,取走的是B饮料;
于是有:10.1x-(3-2)=403
解得:x=40.
工作日期间一天的销售收入为:19×40=760元.
故答案为:760.
考查销售过程中的数量之间的关系,以及方程的整数解得问题,通过探索、推理、验证得到答案.
13、y=﹣1x+1.
【解析】
由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.
【详解】
∵点P(1,2)关于x轴的对称点为P′,
∴P′(1,﹣2),
∵P′在直线y=kx+3上,
∴﹣2=k+3,解得:k=﹣1,
则y=﹣1x+3,
∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.
故答案为y=﹣1x+1.
考点:一次函数图象与几何变换.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.
【解析】
(1)根据勾股定理解答即可;
(2)根据题意、结合图形,根据完全平方公式进行计算即可;
(2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.
【详解】
解:(1)在中,,,,,
由勾股定理得,,
故答案为:;
(2),
又正方形的面积四个全等直角三角形的面积的面积正方形CFGH的面积,
.
.
,
故答案为:;正方形的面积;四个全等直角三角形的面积的面积正方形CFGH的面积;;
(2)设,则,
由折叠的性质可知,,
在中,,
则,
解得,,
则PN的长为2.
本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.
15、证明见解析.
【解析】
利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.
【详解】
证明:如图,连接ED、DG、GF、FE.
∵BD、CE是△ABC的两条中线,
∴点D、E分别是边AC、AB的中点,
∴DE∥CB,DE=CB;
又∵F、G分别是OB、OC的中点,
∴GF∥CB,GF=CB;
∴DE∥GF,且DE=GF,
∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).
考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
16、 (1)v=;(2)平均每小时至少要卸货20吨.
【解析】
(1)直接利用vt=100进而得出答案;
(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.
【详解】
(1)由题意可得:100=vt,
则;
(2)∵不超过5小时卸完船上的这批货物,
∴t≤5,
则v≥=20,
答:平均每小时至少要卸货20吨.
考查了反比例函数的应用,正确得出函数关系式是解题关键.
17、(1);(2);(3)的面积不随t的值的变化而变化,理由见解析。
【解析】
(1)根据题意首先计算出C点的坐标,再计算三角形的面积.
(2)首先利用反比例函数的关系式设出A点的坐标,在表示B、C点的坐标,结合AB=BC求解未知数,即可的A点的坐标.
(3)过点C作轴于点E,轴于点D,再根据P点的坐标表示A、B、C点的坐标,再利用,即可求解出的面积.
【详解】
解:(1)当点P的坐标为时,点A、B的横坐标为-1,
∵点A在反比例函数上,点B在反比例函数上,
∴点,点.
轴,
∴点C的纵坐标为4,
又∵点C在上,∴点C的坐标为,
(2)设点A的坐标为,则
则
得方程,解之,得(含正),
(3)过点C作轴于点E,轴于点D。如图所示:
∵点P的坐标为,
∴点A的坐标为,点,点
故的面积不随t的值的变化而变化
本题主要考查反比例函数的性质,关键在于反比例函数上的点与坐标轴形成矩形的面积性质,反比例函数上的点与坐标轴形成矩形的面积是定值.
18、(1)设y=kx+b,当x=0时,y=2,当x=150时,y=1.
∴ 150k+b=1 b="2"
解得
∴y=x+2.
(2)当x=400时,y=×400+2=5>3.
∴他们能在汽车报警前回到家.
【解析】
(1)先设出一次函数关系式,再根据待定系数法即可求得函数关系式;
(2)把x=400代入一次函数关系式计算出y的值即可得到结果.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质可知,,然后利用即可得出答案.
【详解】
∵四边形是菱形,
∴,
∵,,
∴
∴
故答案为:.
本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.
20、7
【解析】
试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
21、.
【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.
【详解】
如图,作AE⊥OB于E,A′H⊥OB于H.
∵A(1,),
∴OE=1,AE=,
∴OA==2,
∵△OAB是等边三角形,
∴∠AOB=60°,
∵∠AOA′=15°,
∴∠A′OH=60°﹣15°=45°,
∵OA′=OA=2,H⊥OH,
∴A′H=OH=,
∴(,),
故答案为:(,).
此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.
22、1
【解析】
设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
【详解】
设购买篮球x个,则购买足球个,
根据题意得:,
解得:.
为整数,
最大值为1.
故答案为1.
本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
23、1.
【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
【详解】
∵与最简二次根式是同类二次根式,且=1,
∴a+1=3,解得:a=1.
故答案为1.
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
二、解答题(本大题共3个小题,共30分)
24、需要m的铁棍.
【解析】
根据图中的几何关系,然后由菱形的四边相等可以求出答案.
【详解】
由题意,知两个大菱形的边长为: (m) .
小菱形的边长为: (m) .
所以三个菱形的周长的和为:(m) .
所以所需铁棍的总长为:1.8×9+2.4×2+2=m .
答:需要m的铁棍.
本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.
25、(1)详见解析; (2)80.
【解析】
(1)根据SAS证明即可;
(2)根据勾股定理求得AE= ,再由旋转的性质得出,从而由面积公式得出答案.
【详解】
四边形ABCD是正方形,
,
而F是CB的延长线上的点,
,
在和中
,
;
(2) ,
,
在中,DE=4,AD=12,
,
可以由绕旋转中心 A点,按顺时针方向旋转90度得到,
,
的面积(平方单位).
本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.
26、(1)2;(2)28.
【解析】
(1)首先求出AF的长度,再在直角三角形AEF中求出EF的长度;
(2)连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH的长,最后根据面积公式求出答案.
【详解】
(1)∵四边形ABCD是菱形,
∴AD=AB=8,
∵F是AB的中点,
∴AF=AB=×8=4,
∵点F作FE⊥AD,∠A=60°,
∴∠AFE=30°,
∴AE=,
∴EF=2;
(2)如图,连接BD,DF,DF交PP′于H.
由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四边形PP′CD是平行四边形,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD是等边三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF==4,
∴DH=4﹣=,
∴平行四边形PP′CD的面积=×8=28.
本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.
题号
一
二
三
四
五
总分
得分
批阅人
周阅读用时数(小时)
4
5
8
12
学生人数(人)
3
4
2
1
2024年河南省三门峡市名校九上数学开学学业水平测试试题【含答案】: 这是一份2024年河南省三门峡市名校九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省平顶山市宝丰县观音堂初级中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年河南省平顶山市宝丰县观音堂初级中学九上数学开学教学质量检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西省钦州市名校数学九上开学预测试题【含答案】: 这是一份2024年广西省钦州市名校数学九上开学预测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。