2024年广东省肇庆市九上数学开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.m6•m2=m12B.m6÷m2=m3
C.()5=D.(m2)3=m6
2、(4分)函数y=kx+1与函数y=在同一坐标系中的大致图象是( )
A.B.
C.D.
3、(4分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1056张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1056B.x(x-1)=1056C.x(x+1)=1056×2D.x(x-1)=1056×2
4、(4分)下列计算结果正确的是( )
A.+=B.3-=3
C.×=D.=5
5、(4分)用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是( )
A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6
6、(4分)为了解学生的体能情况,抽取某学校同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为( )
A.5
B.10
C.15
D.20
7、(4分)一个正比例函数的图象经过(1,﹣3),则它的表达式为( )
A.y=﹣3xB.y=3xC.y=D.y=﹣
8、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是( )
A.100°B.120°C.130°D.150°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是______
10、(4分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.
11、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)
12、(4分)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
13、(4分)点A(x1,y1)、B(x2,y2)在一次函数y=-2x+b的图象上,若x1<x2,则y1______y2(填“<”或“>”或“=”).
三、解答题(本大题共5个小题,共48分)
14、(12分)新能源汽车投放市场后,有效改善了城市空气质量。经过市场调查得知,某市去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆.
(1)求今、明两年新能源汽车数量的平均增长率;
(2)为鼓励市民购买新能源汽车,该市财政部门决定对今年增加的新能源汽车给予每辆0.8万元的政府性补贴.在(1)的条件下,求该市财政部门今年需要准备多少补贴资金?
15、(8分)已知某实验中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m,BD=12m,CB=13m,DA=4m,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?
16、(8分)为了让学生拓展视野、丰富知识,加深与自然和文化的亲近感,增加对集体生活方式和社会公共道德的体验,我区某中学决定组织部分师生去随州炎帝故里开展研学旅行活动.在参加此次活动的师生中,若每位老师带个学生,还剩个学生没人带;若每位老师带个学生,就有一位老师少带个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.
(1)参加此次研学旅行活动的老师有 人;学生有 人;租用客车总数为 辆;
(2)设租用辆乙种客车,租车费用为元,请写出与之间的函数关系式;
(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过元,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
17、(10分)如图①,在平面直角坐标系中,直线y=−12x+2与交坐标轴于A,B两点.以AB为斜边在第一象限作等腰直角三角形ABC,C为直角顶点,连接OC.
(1)求线段AB的长度
(2)求直线BC的解析式;
(3)如图②,将线段AB绕B点沿顺时针方向旋转至BD,且,直线DO交直线y=x+3于P点,求P点坐标.
18、(10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF
(1)求证:
(2)若,,求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于 x 的方程 x2+5x+m=0 的一个根为﹣2,则另一个根是________ .
20、(4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
21、(4分)在菱形ABCD中,AE垂直平分BC,垂足为E,AB=6,则菱形ABCD的对角线BD的长是_____.
22、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
23、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1:y=﹣2x与直线l2:y=kx+b在同一平面直角坐标系内交于点P.
(1)直接写出不等式﹣2x>kx+b的解集______;
(2)设直线l2与x轴交于点A,△OAP的面积为12,求l2的表达式.
25、(10分)计算:
(1)
(2)
(3)
26、(12分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).
(1)求一次函数的解析式;
(2)求一次函数的图象与坐标轴围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分别根据同底数幂的乘法和除法法则、分式的乘方和幂的乘方法则计算各项即得答案.
【详解】
解:A、原式=m8 ≠m12,所以本选项不符合题意;
B、原式=m4≠m3,所以本选项不符合题意;
C、原式=≠,所以本选项不符合题意;
D、原式=m6,所以本选项符合题意.
故选:D.
此题考查了分式的乘方,同底数幂的乘法,幂的乘方以及同底数幂的除法等运算法则,熟练掌握幂的运算性质是解本题的关键.
2、A
【解析】
试题分析:根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.①当k>0时,y=kx+1与y轴的交点在正半轴,过一、二、三象限,y=的图象在第一、三象限;②当k<0时,y=kx+1与y轴的交点在正半轴,过一、二、四象限,y=的图象在第二、四象限.
故选A.
考点:反比例函数的图象;一次函数的图象.
3、B
【解析】
如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名同学,那么总共送的张数应该是x(x-1)张,即可列出方程.
【详解】
解:∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1.
故选:B.
本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.
4、C
【解析】
选项A. 不能计算.A错误.
选项B. ,B错误.
选项C. ,正确.
选项 D. ,D错误.
故选C.
5、C
【解析】
按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.
【详解】
解:x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,
(x﹣2)2=2,
故选:C.
本题主要考查配方法,掌握完全平方公式是解题的关键.
6、B
【解析】
根据频率= ,即可求得总数,进而即可求得第四小组的频数.
【详解】
解:总数是5÷0.1=50人;
则第四小组的频数是50×(1-0.1-0.3-0.4)=50×0.2=10,
故选B.
本题考查频率的计算公式,解题关键是熟记公式.
7、A
【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.
【详解】
设正比例函数解析式为y=kx(k≠0).则根据题意,得
﹣3=k,解得k=﹣3
∴正比例函数的解析式为:y=﹣3x
故选A.
本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
8、C
【解析】
根据三角形中位线定理得到PE= AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.
【详解】
解:∵P是对角线BD的中点,E,F分别是AB,CD的中点,
∴PE=AD,PF=BC,
∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=25°,
∴∠EPF=130°,
故选:C.
本题考查三角形中位线定理,解题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0
根据一次函数的定义即可解答.
【详解】
解:已知已知直线y=(k﹣2)x+k经过第一、二、四象限,
故,
即0
10、-1
【解析】
根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.
【详解】
解∵正比例函数y=mx的图象经过点A(m,4),
∴4=m1.
∴m=±1
∵y的值随x值的增大而减小
∴m=﹣1
故答案为﹣1
本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.
11、
【解析】
连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.
【详解】
解:连接AC、CF,
在正方形ABCD和正方形CEFG中,
∠ACG=45°,∠FCG=45°,
∴∠ACF=90°,
∵BC=a,CE=b,
∴AC=a,CF=b,
由勾股定理得,AF==,
∵∠ACF=90°,H是AF的中点,
∴CH=,
故答案为:.
本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
12、1.25
【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.
【详解】
设小路的宽度为,由题意和图示可知,小路的面积为
,解一元二次方程,由,可得.
本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.
13、>
【解析】
根据一次函数图象的增减性进行答题.
【详解】
解:∵一次函数y=-2x+b中的x的系数-2<0,
∴该一次函数图象是y随x的增大而减小,
∴当x1<x2时,y1>y2
故答案是:>.
本题考查了一次函数图象上点的左边特征.此题也可以把点A、B的坐标代入函数解析式,求得相应的y的值,然后再比较大小.
三、解答题(本大题共5个小题,共48分)
14、(1)40%;(2)财政部门今年需要准备1040万元补贴资金.
【解析】
(1)设今、明两年新能源汽车数量的平均增长率为x,根据“去年新能源汽车总量已达到3250辆,预计明年会增长到6370辆”列出方程并解答;
(2)根据(1)中的增长率可以得到:3250×增长率×0.1.
【详解】
解:(1)设今、明两年新能源汽车数量的平均增长率为,由题意得
.
解得,,(舍)
因此,.
所以,今、明两年新能源汽车数量的平均增长率为40%.
(2)3250×40%×0.1=1040(万元).
所以,财政部门今年需要准备1040万元补贴资金.
本题考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
15、学校需要投入10800元买草坪
【解析】
连接CD,在直角三角形ACD中可求得CD的长,由BD、CB、CD的长度关系可得三角形DBC为一直角三角形,BC为斜边;由此看,四边形ABCD由Rt△ACD和Rt△DBC构成,然后求直角三角形的面积之和即可.
【详解】
解:连接CD,
在RtΔACD中,
在ΔCBD中,,
而即
所以∠BDC=90°
则
=5
所以需費用36×300=10800(元).
答:学校需要投入10800元买草坪..
本题考查了勾股定理的应用,通过勾股定理判定三角形直角三角形,是解答本题的关键.
16、(1);;;(2);(3)共有种租车方案:方案一:租用甲种客车辆,乙种客车辆;方案二:租用甲种客车辆,乙种客车辆;方案三:租用甲种客车辆,乙种客车辆;最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;
【解析】
(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;
(2)设用辆乙,则甲种客车数为:辆,代入计算即可
(3)设租用x辆乙种客车,则甲种客车数为:(8-x)辆,由题意得出400x+300(8-x)≤3100,得出x取值范围,分析得出即可.
【详解】
(1)设老师有x名,学生有y名。
依题意,列方程组 ,
解得,
∵每辆客车上至少要有2名老师,
∴汽车总数不能超过8辆;
又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,
综合起来可知汽车总数为8辆;
答:老师有16名,学生有284名;租用客车总数为8辆。
(2)租用辆乙,甲种客车数为:辆,
.
(3)租车总费用不超过元,租用乙种客车不少于辆,
,解得:,
为使名师生都有座,,
解得:,
取整数为.
共有种租车方案:
方案一:租用甲种客车辆,乙种客车辆;
方案二:租用甲种客车辆,乙种客车辆;
方案三:租用甲种客车辆,乙种客车辆;
由(2),随的减小而减小,
且为整数,当时,元,
故最节省费用的租车方案是:租用甲种客车辆,乙种客车辆;
本题考查二元一次方程组的应用,一次函数以及一元一次不等式的应用,正确列出式子是解题关键.
17、(1);(2);(3)P点的坐标是.
【解析】
(1)先确定出点A,B坐标,利用勾股定理计算即可;
(2)如图1中,作CE⊥x轴于E,作CF⊥y轴于F,进而判断出,即可判断出四边形OECF是正方形,求出点C坐标即可解决问题.
(3)如图2中,先判断出点B是AM的中点,进而求出M的坐标,即可求出DP的解析式,联立成方程组求解即可得出结论.
【详解】
解:(1)∵直线交坐标轴于A、B两点.
∴令,,∴B点的坐标是,
,
令,,∴A点的坐标是,
,
根据勾股定理得:.
(2)如图,作CE⊥x轴于E,作CF⊥y轴于F,
∴四边形OECF是矩形.
∵是等腰直角三角形,
,,,
,
,,.
∴四边形OECF是正方形,
,
,,.
∴C点坐标
设直线BC的解析式为:,
∴将、代入得:,
解得:,.
∴直线BC的解析式为:.
(3)延长AB交DP于M,
由旋转知,BD=AB,
∴∠BAD=∠BDA,
∵AD⊥DP,
∴∠ADP=90°,
∴∠BDA+∠BDM=90°,∠BAD+∠AMD=90°,
∴∠AMD=∠BDM,
∴BD=BM,
∴BM=AB,
∴点B是AM的中点,
∵A(4,0),B(0,2),
∴M(−4,4),
∴直线DP的解析式为y=−x,
∵直线DO交直线y=x+3于P点,
将直线与联立得:
解得:
∴P点的坐标是.
此题是一次函数综合题,主要考查了待定系数法求函数解析式,一次函数的图像和性质,全等三角形的判定和性质,等腰三角形的判定和性质等,解(2)的关键是求出点C的坐标,解(3)的关键是证明点B是AM的中点,求出直线DP的解析式.
18、(1)详见解析; (2)80.
【解析】
(1)根据SAS证明即可;
(2)根据勾股定理求得AE= ,再由旋转的性质得出,从而由面积公式得出答案.
【详解】
四边形ABCD是正方形,
,
而F是CB的延长线上的点,
,
在和中
,
;
(2) ,
,
在中,DE=4,AD=12,
,
可以由绕旋转中心 A点,按顺时针方向旋转90度得到,
,
的面积(平方单位).
本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
解:设方程的另一个根为n,
则有−2+n=−5,
解得:n=−3.
故答案为
本题考查一元二次方程的两根是,则
20、1
【解析】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.
【详解】
如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.
由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.
∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.
故答案为:1.
本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.
21、6
【解析】
先证明△ABC是等边三角形,得出AC=AB,再得出OA,根据勾股定理求出OB,即可得出BD.
【详解】
如图,
∵菱形ABCD中,AE垂直平分BC,
∴AB=BC,AB=AC,OA=AC,OB=BD,AC⊥BD,
∴AB=BC=AC=6,
∴OA=3,
∴OB=,
∴BD=2OB=6,
故答案为:6.
本题考查了菱形的性质、勾股定理的运用;熟练掌握菱形的性质,证明等边三角形和运用勾股定理求出OB是解决问题的关键.
22、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
23、.
【解析】
一次函数的图象有两种情况:
①当时,函数的值随x的值增大而增大;
②当时,函数的值随x的值增大而减小.
由题意得,函数的y随x的增大而增大,.
二、解答题(本大题共3个小题,共30分)
24、(1)x<3;(2)l2的表达式为y=6x-1
【解析】
(1)求不等式-2x>kx+b的解集就是求当自变量x取什么值时,y=-2x的函数值大;
(2)求△OAP的面积,只要求出OA边上的高就可以,即求两个函数的交点的纵坐标的绝对值.
【详解】
解:(1)从图象中得出当x<3时,直线l1:y=-2x在直线l2:y=kx+b的上方,
∴不等式-2x>kx+b的解集为x<3,
故答案为x<3;
(2)∵点P在l1上,
∴y=-2x=-6,
∴P(3,-6),
∵S△OAP=×6×OA=12,
∴OA=4,A(4,0),
∵点P和点A在l2上,
∴
∴
∴l2:y=6x-1.
此题考查一次函数问题,关键是根据求线段的长度的问题一般是转化为求点的坐标的问题来解决.
25、(1)4;(2);(3)
【解析】
(1)先算括号里面的,再算加减,即可得出答案;
(2)先除法,再进行通分运算,最后化简,即可得出答案;
(3)先对括号里面的进行通分,再进行分式的除法运算,即可得出答案.
【详解】
解(1)原式=-1+1+4=4
(2)原式=
=
=
=
(3)原式=
=
=
(1)本题主要考查,以及负指数幂,注意;
(2)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键;
(3)本题主要考查分式的混合运算,通分、约分、因式分解和约分是解答本题的关键.
26、 (1) y=2x+4 ;(2)直线y=2x+4与坐标轴围成的三角形的面积为
【解析】
(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.
(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.
【详解】
(1)∵一次函数y=kx+b的图象为直线,且与直线y=2x平行,
∴k=2
又知其过点A(1,6),
∴2+b=6
∴b=4.
∴一次函数的解析式为y=2x+4
(2)当x=0时,y=4,
可知直线y=2x+4与y轴的交点为(0,4)
当y=0时,x=-2,
可知直线y=2x+4与x轴交点为(-2,0)
可得该直角三角形的两条直角边长度分别为4和2.
所以直线y=2x+4与坐标轴围成的三角形的面积为
本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.
题号
一
二
三
四
五
总分
得分
批阅人
2024年广东省肇庆市九上数学开学经典模拟试题【含答案】: 这是一份2024年广东省肇庆市九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省肇庆市端州区数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年广东省肇庆市端州区数学九年级第一学期开学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省肇庆市端州区端州区南国中学英文学校数学九上开学达标检测试题【含答案】: 这是一份2024年广东省肇庆市端州区端州区南国中学英文学校数学九上开学达标检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。