2024年广东省深圳市龙岗区六约学校九年级数学第一学期开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列分式,,,最简分式的个数有( )
A.4个B.3个C.2个D.1个
2、(4分)下列说法中,不正确的是( )
A.两组对边分别平行的四边形是平行四边形
B.对角线互相平分且垂直的四边形是菱形
C.一组对边平行另外一组对边相等的四边形是平行四边形
D.有一组邻边相等的矩形是正方形
3、(4分)如图,若一次函数与的交点坐标为,则的解集为( )
A.B.C.D.
4、(4分)如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画( )
A.2个B.3个C.4个D.5个
5、(4分)若函数的图象与坐标轴有三个交点,则b的取值范围是
A.且B.C.D.
6、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )
A.B.C.D.
7、(4分)如图,在平行四边形ABCD中,BC=10,AC=14,BD=8,则△BOC的周长是( )
A.21B.22C.25D.32
8、(4分)已知点在第二象限,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算的结果是______.
10、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
11、(4分)已知,若整数满足,则__________.
12、(4分)如图,在平行四边形中,的平分线交于点,.若,,则四边形的面积为________.
13、(4分)某班的中考英语口语考试成绩如表:
则该班中考英语口语考试成绩的众数比中位数多_____分.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,、相交于点,且是、的中点,点在四边形外,且,
求证:边形是矩形.
15、(8分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
16、(8分)(1)计算:;(2)已知,,求的值
17、(10分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。
(1)求甲、乙独做各需多少天?
(2)若从节省资金的角度,应该选择哪个工程队?
18、(10分)如图,在△ABC中,∠ACB=90°,且DE是△ABC的中位线.延长ED到F,使DF=ED,连接FC,FB.回答下列问题:
(1)试说明四边形BECF是菱形.
(2)当的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据15、13、14、13、16、13的众数是______,中位数是______.
20、(4分)有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 .
21、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.
22、(4分)如图,将矩形纸片ABCD分别沿AE、CF折叠,若B、D两点恰好都落在对角线的交点O上,下列说法:①四边形AECF为菱形,②∠AEC=120°,③若AB=2,则四边形AECF的面积为,④AB:BC=1:2,其中正确的说法有_____.(只填写序号)
23、(4分)已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:
(1)求这次抽样测试数据的平均数、众数和中位数;
(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;
(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?
25、(10分)在正方形ABCD中,E是△ABD内的点,EB=EC.
(1)如图1,若EB=BC,求∠EBD的度数;
(2)如图2,EC与BD交于点F,连接AE,若,试探究线段FC与BE之间的等量关系,并说明理由.
26、(12分)小林为探索函数的图象与性经历了如下过程
(1)列表:根据表中的取值,求出对应的值,将空白处填写完整
(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象.
(3)若函数的图象与的图象交于点,,且为正整数),则的值是_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接利用分式的基本性质化简得出答案.
【详解】
解:,不能约分,,,
故只有是最简分式.最简分式的个数为1.
故选:D.
此题主要考查了最简分式,正确化简分式是解题关键.
2、C
【解析】
根据平行四边形、菱形和正方形的判定方法进行分析可得.
【详解】
A. 两组对边分别平行的四边形是平行四边形,正确;
B. 对角线互相平分且垂直的四边形是菱形,正确;
C. 一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;
D. 有一组邻边相等的矩形是正方形,正确.
故选C.
3、A
【解析】
根据两函数图象的上下位置关系结合交点的横坐标,即可得出不等式的解集.
【详解】
解:观察函数图象,可知:当x<3时,直线在直线的下方,
∴不等式的解集为.
故选:A.
本题考查了一次函数与一元一次不等式以及在数轴上表示不等式的解集,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.
4、D
【解析】
根据平行四边形的判定方法即可解决问题.
【详解】
在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个,
故选D.
本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题.
5、A
【解析】
抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.
解:∵函数的图象与坐标轴有三个交点,
∴,且,
解得,b<1且b≠0.
故选A.
6、B
【解析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.
【详解】
解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.
本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.
7、A
【解析】
由平行四边形的性质得出OA=OC=7,OB=OD=4,即可得出△BOC的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC=7,OB=OD=4,
∴△BOC的周长=OB+OC+BC=4+7+10=21;
故选:A.
本题考查了平行四边形的性质以及三角形周长的计算;熟记平行四边形的对角线互相平分是解题关键.
8、D
【解析】
依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.
【详解】
∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.
故选D.
本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用二次根式的计算法则正确计算即可.
【详解】
解:
=
=
=1
故答案为:1.
本题考查的是二次根式的混合运算,掌握计算法则是解题关键.
10、2
【解析】
作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;
【详解】
解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.
由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,
∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,
在Rt△MGA′中,x2=(9﹣x)2+32,
∴x=5,AA′=,
∵sin∠MAK=,
∴ ,
∴MK=,
∵AM∥OA′,AK=KA′,
∴MK=KO,
∵BN∥HA′∥AD,DA′=EA′,
∴MO=ON,
∴MN=4MK=2,
故答案为2.
本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.
11、
【解析】
先根据确定m的取值范围,再根据,推出,最后利用来确定a的取值范围.
【详解】
解:
为整数
为
故答案为:1.
本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出的取值范围是解此题的关键.
12、1
【解析】
首先证明四边形ABEF是菱形,然后求出AE即可解决问题.
【详解】
解:连接AE,交BF于点O.
∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥BE,
∵EF∥AB,
∴四边形ABEF是平行四边形,
∵AF∥BE,
∴∠AFB=∠FBE,
∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠ABF=∠AFB,
∴AB=AF,
∴平行四边形ABEF是菱形,连接AE交BF于O,
∴AE⊥BF,OB=OF=3,OA=OE,
在Rt△AOB中,OA==4,
∴AE=2OA=8,
∴S菱形ABEF=•AE•BF=1.
故答案为1.
本题考查菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质和判定进行推理是解此题的关键,难度适中.
13、3
【解析】
这组数出现次数最多的是3;∴这组数的众数是3.
∵共42人,∴中位数应是第23和第22人的平均数,位于最中间的数是2,2,
∴这组数的中位数是2.
∴该班中考英语口语考试成绩的众数比中位数多3﹣2=3分,
故答案为3.
【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
连接EO,首先根据O为BD和AC的中点,得出四边形ABCD是平行四边形,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,得到AC=BD,可证出结论.
【详解】
解:连接如图所示:
是、的中点,
∴,,
∴四边形是平行四边形,
在中,为中点,,
在中,为中点,,
,又四边形是平行四边形,
平行四边形是矩形.
此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.
15、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
【解析】
(1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
BD⊥BC;
(1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
(3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
【详解】
(1)证明:连接 BD.
∵AD=4m,AB=3m,∠BAD=90°,
∴BD=5m.
又∵BC=11m,CD=13m,
∴BD1+BC1=CD1.
∴BD⊥CB;
(1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
= ×3×4+ ×11×5
=6+30
=36(m1).
故这块土地的面积是 36m1;
(3)∵S△PBD=S 四边形ABCD
∴•PD•AB= ×36,
∴•PD×3=9,
∴PD=6,
∵D(0,4),点 P 在 y 轴上,
∴P 的坐标为(0,-1)或(0,10).
本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
16、(1);(2)11.
【解析】
(1)根据实数的性质进行化简即可求解;(2)根据完全平方公式与平方差公式即可求解.
【详解】
解:(1)原式;
(2)
此题主要考查整式的运算,解题的关键是熟知实数的性质及乘法公式的应用.
17、(1)10 15 (2)选甲比较节约资金.
【解析】
(1)设甲独做要x天,乙独做要y天,根据题意列方程即可.
(2)设甲独做要1天要m元,乙独做要1天要n元,再计算每个工程队的费用进行比较即可.
【详解】
(1)设甲独做要x天,乙独做要y天
解得:
故甲独做要10天,乙独做要15天
(2)设甲独做要1天要m元,乙独做要1天要n元
解得
甲独做要的费用为:
乙独做要的费用为:
所以选甲
本题主要考查二元一次方程组的应用,是常考点,应当熟练掌握.
18、(1)见解析;(2)当∠A=45°时,菱形BECF是正方形.
【解析】
分析:(1)根据已知条件发现:可以证明四边形的对角线互相垂直平分即是一个菱形.
(2)菱形要是一个正方形,则根据正方形的对角线平分一组对角,即∠BEF=45°,则∠A=45°.
详(1)证明:∵DE是△ABC的中位线,
∴DE∥AC.
又∵∠ACB=90°,
∴EF⊥BC.
又∵BD=CD,DF=ED,
∴四边形BECF是菱形.
(2)解:要使菱形BECF是正方形
则有BE⊥CE
∵E是△ABC的边AB的中点
∴当△CBA是等腰三角形时,满足条件
∵∠BCA=90°
∴△CBA是等腰直角三角形
∴当∠A=45°时,菱形BECF是正方形.
点睛:(1)熟悉菱形的判定方法;(2)探索性的试题,可以从若要满足结论,则需具备什么条件进行分析.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、13 13.5
【解析】
这组数据中出现次数最多的数为众数;把这组数按从小到大的顺序排列,因为数的个数是偶数个,那么中间两个数的平均数即是中位数由此解答.
【详解】
解:∵15、13、14、13、16、13中13出现次数最多有3次,
∴众数为13,
将这组数从小到大排列为:13,13,13,14,15,16,最中间的两个数是13,14,所以中位数=(13+14)÷2=13.5
故答案为:13;13.5.
此题主要考查了中位数和众数的含义.
20、1
【解析】
试题分析:先由平均数计算出a=4×5-1-3-5-6=4,再计算方差(一般地设n个数据,x1,x1,…xn的平均数为,=(),则方差=[]),=[]=1.
考点:平均数,方差
21、
【解析】
将分式方程中的换,则=,代入后去分母即可得到结果.
【详解】
解:根据题意得:,
去分母得:.
故答案为:.
此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.
22、①②③
【解析】
根据折叠性质可得OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,即可得出∠ACB=30°,进而可得∠OCF=∠DCF=∠BAE=∠OAE=30°,可证明
AE//CF,AE=CE,根据矩形性质可得CE//AF,即可得四边形AECF是平行四边形,进而可得四边形AECF为菱形,由∠BAE=30°,可得∠AEB=60°,即可得∠AEC=120°,根据含30°角的直角三角形的性质可求出BE的长,即可得OE的长,根据菱形的面积公式即可求出四边形AECF的面积,根据含30°角的直角三角形的性质即可求出AB:BC的值,综上即可得答案.
【详解】
∵矩形ABCD分别沿AE、CF折叠,B、D两点恰好都落在对角线的交点O上,
∴OC=CD=AB=OA,∠COF=∠EOA=∠B=∠D=90°,∠OCF=∠DCF,∠BAE=∠OAE,
∴∠ACB=∠CAD=30°,∠BAC=∠ACD=60°,
∵∠OCF=∠DCF,∠BAE=∠OAE,
∴∠OCF=∠DCF=∠BAE=∠OAE=30°,
∴AE//CF,AE=CE,
∴四边形AECF是平行四边形,
∵AE=CE,
∴四边形AECF是菱形,故①正确,
∵∠BAE=30°,∠B=90°,
∴∠AEB=60°,
∴∠AEC=120°,故②正确,
设BE=x,
∵∠BAE=30°,
∴AE=2x,
∴x2+22=(2x)2,
解得:x=,
∴OE=BE=,
∴S菱形AECF=EFAC=××4=,故③正确,
∵∠ACB=30°,
∴AC=2AB,
∴BC==AB,
∴AB:BC=1:,故④错误,
综上所述:正确的结论有①②③,
故答案为:①②③
本题考查矩形的性质、菱形的判定与性质及含30°角的直角三角形的性质,熟练掌握相关性质及判定方法是解题关键.
23、
【解析】
先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.
【详解】
∵3x - m+1>0,
∴3x> m-1,
∴x>,
∵不等式3x - m+1>0的最小整数解为2,
∴1≤<3,
解之得
.
故答案为:.
本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m的不等式是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) 中位数为4个,众数为4个,平均数为5个(2) 中位数或众数,理由见解析(3) 25200人
【解析】
试题分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以总人数;
(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;
(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.
试题解析:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;
众数为4个,
中位数为4个.
(2)用中位数或众数(4个)作为合格标准次数较为合适,
因为4个大部分同学都能达到.
(3)(人).
故估计该市九年级男生引体向上项目测试的合格人数是25200人.
考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.
25、(1)15°;(2)
【解析】
(1)根据等边三角形的性质得∠EBC=60°,根据正方形的一条对角线平分内角可得∠CBD=45°,根据角的和与差可得结论;
(2)连接AF,证明△ABF≌△CBF(SAS),得AF=CF,∠BAF=∠BCF,根据等腰三角形的性质和等式的性质得∠ABE=∠DCE,从而得∠AGB=90°,最后利用面积和表示四边形ABFE的面积,可得结论.
【详解】
解:如解图1,四边形是正方形,
平分
∴.
,
是等边三角形.
∴∠EBC=60°
°
解:
理由如下:
如解图2,连接与交于点,
四边形是正方形,
.
又
.
,
由得,
又
.
.
在中,
.
本题考查了正方形的性质,三角形全等的性质和判定,三角形的面积,等边三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,在正方形中确定全等三角形,属于中考常考题型.
26、(1)3,1.5;(1)见解析;(3)1.
【解析】
(1)当时,,即可求解;
(1)描点描绘出以下图象,
(3)在(1)图象基础上,画出,两个函数交点为,,即可求解.
【详解】
解:(1)当时,,同理当时,,
故答案为3,1.5;
(1)描点描绘出以下图象,
(3)在(1)图象基础上,画出,
两个函数交点为,,
即,
故答案为1.
本题考查的是反比例函数综合运用,涉及到一次函数基本性质、复杂函数的作图,此类题目通常在作图的基础上,依据图上点和线之间的关系求解.
题号
一
二
三
四
五
总分
得分
考试成绩/分
30
29
28
27
26
学生数/人
3
15
13
6
3
个数
1
2
3
4
5
6
7
8
9
10
11
人数
1
1
6
18
10
6
2
2
1
1
2
2.5
3
3.5
4
4.5
5
6
____
2
____
1.2
1
2024年广东省深圳市龙岗区南湾学校数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024年广东省深圳市龙岗区南湾学校数学九年级第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省深圳市龙岗区六约学校九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区六约学校九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列事件中,属于随机事件的是,下列运算中,正确的是,下列各式与是同类二次根式的是,下列说法正确的是,估计 ,的值应在等内容,欢迎下载使用。
2023-2024学年广东省深圳市龙岗区龙岗区横岗六约学校九上数学期末联考模拟试题含答案: 这是一份2023-2024学年广东省深圳市龙岗区龙岗区横岗六约学校九上数学期末联考模拟试题含答案,共8页。试卷主要包含了下列说法错误的是,在平面直角坐标系中,点P,如图,是的外接圆,是直径等内容,欢迎下载使用。