2024年广东省韶关市乳源瑶族自治县数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式成立的是( )
A.B.C.D.
2、(4分)如图,将▱ABCD沿对角线AC进行折叠,折叠后点D落在点F处,AF交BC于点E,有下列结论:①△ABF≌△CFB;②AE=CE;③BF∥AC;④BE=CE,其中正确结论的个数是( )
A.1B.2C.3D.4
3、(4分)如图,矩形的面积为,反比例函数的图象过点,则的值为( )
A.B.C.D.
4、(4分)已知一次函数的图象经过点A,且函数值y随x的增大而减小,则点A的坐标可能是
A.B.C.D.
5、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4,5,6B.2,3,4C.3,4,5D.1,,
6、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是( )
A.B.C.D.
7、(4分)到三角形三个顶点距离相等的点是( )
A.三角形三条边的垂直平分线的交点
B.三角形三条角平分线的交点
C.三角形三条高的交点
D.三角形三条边的中线的交点
8、(4分)一元二次方程的解是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果关于x的分式方程有增根,则增根x的值为_____.
10、(4分)在分式中,当x=___时分式没有意义.
11、(4分)对下列现象中蕴含的数学原理阐述正确的是_____(填序号)
①如图(1),剪两张对边平行的纸条,随意交叉叠放在一起,重合的部分构成一个平行四边形.其依据是两组对边分别平行的四边形是平行四边形.
②如图(2),工人师傅在做矩形门窗时,不仅测量出两组对边的长度是否相等,还要测量出两条条对角线的长度相等,以确保图形是矩形.其依据是对角线相等的四边形是矩形.
③如图(3),将两张等宽的纸条放在一起,重合部分构成的四边形ABCD一定是菱形.其依据是一组邻边相等的平行四边形是菱形.
④如图(4),把一张长方形纸片按如图方式折一下,就可以裁出正方形.其依据是一组邻边相等的矩形是正方形.
12、(4分)若+(y﹣2)2=0,那么(x+y)2018=_____.
13、(4分)如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,则DE的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在正方形中,点是直线上一点.连接,将线段绕点顺时针旋转,得到线段,连接.
(1)如图1.若点在线段的延长线上过点作于.与对角线交于点.
①请仔细阅读题目,根据题意在图上补全图形;②求证:.
(2)若点在射线上,直接写出,,三条线段之间的数量关系(不必写过程).
15、(8分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.
(1)抽样的人数是________人,补全频数分布直方图,扇形中________;
(2)本次调查数据的中位数落在________组;
(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
16、(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,
(1)请在所给的网格内画出以线段AB、BC为边的菱形,并求点D的坐标;
(2)求菱形ABCD的对角线AC的长.
17、(10分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE;
(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.
18、(10分)潮州市某学校为了改善办学条件,购置一批电子白板和台式电脑合共24台.经招投标,一台电子白板每台9000元,一台台式电脑每台3000元,设学校购买电子白板和台式电脑总费用为元,购买了台电子白板,并且台式电脑的台数不超过电子白板台数的3倍.
(1)请求出与的函数解析式,并直接写出的取值范围
(2)请问当购买多少台电子白板时,学校购置电子白板和台式电脑的总费用最少,最少多少钱?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
20、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
21、(4分)如图,已知中,边上的高,则的面积是______,边上的高的长是______.
22、(4分)当x_____时,分式有意义.
23、(4分)数据,,,,,,的众数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)我市飞龙商贸城有甲、乙两家商店均出售白板和白板笔,并且标价相同,每块白板50元,每支白板笔4元.某校计划购买白板30块,白板笔若干支(白板笔数不少于90支),恰好甲、乙两商店开展优惠活动,甲商店的优惠方式是白板打9折,白板笔打7折;乙商店的优惠方式是白板及白板笔都不打折,但每买2块白板送白板笔5支.
(1)以x(单位:支)表示该班购买的白板笔数量,y(单位:元)表示该班购买白板及白板笔所需金额.分别就这两家商店优惠方式写出y关于x的函数解析式;
(2)请根据白板笔数量变化为该校设计一种比较省钱的购买方案.
25、(10分)如图,直线l的解析式为y=-x+,与x轴,y轴分别交于A,B两点,双曲线与直线l交于E,F两点,点E的横坐标为1.
(1)求k的值及F点的坐标;
(2)连接OE,OF,求△EOF的面积;
(3)若点P是EF下方双曲线上的动点(不与E,F重合),过点P作x轴,y轴的垂线,分别交直线l于点M,N,求的值.
26、(12分)解下列不等式(组),并在数轴上表示解集:
(1)﹣1;
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接利用二次根式的性质分别化简得出答案.
【详解】
解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选:D.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
2、C
【解析】
根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.
【详解】
解:由折叠可得,AD=AF,DC=FC,
又∵平行四边形ABCD中,AD=BC,AB=CD,
∴AF=BC,AB=CF,
在△ABF和△CFB中,
∴△ABF≌△CFB(SSS),故①正确;
∴∠EBF=∠EFB,
∴BE=FE,
∴BC﹣BE=FA﹣FE,即EC=EA,故②正确;
∴∠EAC=∠ECA,
又∵∠AEC=∠BEF,
∴∠EBF=∠EFB=∠EAC=∠ECA,
∴BF∥AC,故③正确;
∵E不一定是BC的中点,
∴BE=CE不一定成立,故④错误;
故选:C.
本题考查的是全等三角形的性质和平行四边形的性质,熟练掌握二者是解题的关键.
3、B
【解析】
由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.
【详解】
由题意得: ,又双曲线位于第二象限,则,
所以B选项是正确的.
本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.
4、B
【解析】
先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.
【详解】
解:一次函数的函数值y随x的增大而减小,
.
A、当,时,,解得,此点不符合题意,故本选项错误;
B、当,时,,解得,此点符合题意,故本选项正确;
C、当,时,,解得,此点不符合题意,故本选项错误;
D、当,时,,解得,此点不符合题意,故本选项错误.
故选:B.
考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.
5、C
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A. 4+5≠6,不能构成直角三角形,故不符合题意;
B. 2+3≠4,不能构成直角三角形,故不符合题意;
C. 3+4=5,能构成直角三角形,故符合题意;
D. 1+()≠(),不能构成直角三角形,故不符合题意。
故选C.
此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算
6、C
【解析】
根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.
【详解】
解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;
D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
故选:C.
此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
7、A
【解析】
根据线段垂直平分线上的点到两端点的距离相等解答.
【详解】
解:∵线段垂直平分线上的点到线段两个端点的距离相等,
∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选:A.
本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.
8、D
【解析】
用因式分解法求解即可.
【详解】
解:x2+1x=0,
x(x+1)=0,
所以x=0或x+1=0,
解得:x1=0,x2=-1.
故选:D.
本题考查了一元二次方程的解法,根据方程的特点选择恰当的方法是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x=1
【解析】
根据增根的概念即可知.
【详解】
解:∵关于x的分式方程有增根,
∴增根x的值为x=1,
故答案为:x=1.
本题考查了增根的概念,解题的关键是熟知增根是使得分式方程的最简公分母为零的x的值.
10、-1.
【解析】
根据分式无意义,分母等于0得,1+x=0,
解得x=﹣1,
故答案为﹣1.
11、①③④
【解析】
①平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;
②矩形的判定定理:对角线相等的平行四边形是矩形;
③首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则重叠部分为菱形;
④根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.
【详解】
解:①由题意得:AB∥CD,AD∥BC,
∵两组对边分别平行,
∴四边形ABCD是平行四边形,故正确;
②∵两组对边的长度相等,
∴四边形是平行四边形,
∵对角线相等,
∴此平行四边形是矩形,故错误;
③∵四边形ABCD是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
∴AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形(对边相互平行的四边形是平行四边形);
过点D分别作AB,BC边上的高为DE,DF.如图所示:
则DE=DF(两纸条相同,纸条宽度相同);
∵平行四边形ABCD的面积=AB×DE=BC×DF,
∴AB=BC.
∴平行四边形ABCD为菱形(一组邻边相等的平行四边形是菱形),故正确;
④根据折叠原理,对折后可得:
所得的四边形有三个直角,且一组邻边相等,
所以可以裁出正方形纸片,故正确.
故答案为①③④.
本题考查了平行四边形的判定、矩形的判定、菱形的判定以及正方形的判定,熟练掌握判定定理是解题的关键.
12、1
【解析】
直接利用偶次方的性质以及算术平方根的定义得出x,y的值,进而得出答案.
【详解】
∵+(y-2)2=0,
∴x+3=0,y-2=0,
解得:x=-3,y=2,
则(x+y)2018=(-3+2)2018=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
13、1
【解析】
根据角平分线的判定定理求出∠BAD,根据直角三角形的性质计算,得到答案.
【详解】
解:∵DE⊥AB,DF⊥AC,DE=DF,
∴∠BAD=∠CAD=∠BAC=30°,
在Rt△ADE中,∠BAD=30°,
∴DE=AD=1,
故答案为1.
本题考查的是角平分线的判定、直角三角形的性质,掌握到角的两边距离相等的点在角的平分线上是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)①见解析;②见解析;(2)EC=(CD-PC)或EC=(CD+PC)
【解析】
(1)①构建题意画出图形即可;②想办法证明△APB≌△PEH即可;
(2)结论:当点P在线段BC上时:. 当点P在线段BC的延长线上时:,构造全等三角形即可解决问题.
【详解】
解:(1)①补全图形如图所示.
②证明:线段绕点顺时针能转得到线段,
,
四边形是正方形,
,
于,
,,
,
.
,
,
∴;
(2)当点P在线段BC上时:.
理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
易证△PCE≌△AMP,可得EC=PM,
∵CD-PC=BC-PC=PB,
∴EC=PM=PB=(CD-PC),
当点P在线段BC的延长线上时:.
理由:在BA上截取BM=BP.则△PBM是等腰直角三角形,PM=PB.
易证△PCE≌△AMP,可得EC=PM,
∵CD+PC=BC+PC=PB,
∴EC=PM=PB=(CD+PC).
故答案为EC=(CD-PC)或EC=(CD+PC).
本题考查旋转变换、正方形的性质、全等三角形的判断和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
15、(1)60,见解析,84;(2)C;(3)1500人
【解析】
(1)用A类人数除以它所占的百分比得到调查的总人数;用总人数减去A、B、C、E组的人数即可得到D组人数,可以补全直方图;然后用B类人数除以调查的总人数×360°即可得到m的值;
(2)根据总人数确定中位数是第几个数据,再从直方图中找出这个数据落在哪一组;
(3)先算出抽样调查中“一分钟跳绳”成绩大于等于120次的人数,除以调查的总人数再乘以2250即可得到答案
【详解】
解:(1)6÷10%=60,所以抽样人数为60人;
60-(6+14+19+5)=16人,所以补全直方图如下:
扇形统计图中B所对应的圆心角为14÷60×360°=84°,所以84;
故答案为:60,见解析,84
(2)∵调查总人数为60
∴中位数应该是第30和第31个数据的平均数
由图可知第30、31个数据都落在C组,所以中位数落在C组
故答案为C
(3)由图知:“一分钟跳绳”成绩大于等于120次的调查人数为19+16+5=40人
∴人
所以该校2250名学生中“1分钟跳绳”成绩为优秀的大约有1500人
故答案为1500.
本题考查了条形统计图与扇形统计图,样本估计总体以及中位数等,注意计算要认真.
16、(1)D(-2,1);(2)3
【解析】
(1)根据菱形的四条边相等,可分别以点A,C为圆心,以AB长为半径画弧,两弧的交点即为点D的位置,根据所在象限和距坐标轴的距离得到点D的坐标即可;
(2)利用勾股定理易得菱形的一条对角线AC的长即可.
【详解】
解:(1)如图,菱形ABCD为所求图形,D(-2,1);
(2)AC==3.
主要考查了菱形四条边相等的判定,及勾股定理的运用,熟练掌握菱形的性质及勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.
17、(1)证明见解析(2)
【解析】
分析:(1)先根据平行四边形的性质,得出OD=OB,再根据OE=OB,得出OE=OB=OD,最后根据三角形内角和定理,求得∠OEB+∠OED=90°,即可得出结论.
(2)证明△OFD为直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=1.由三角形面积求出EF=.在Rt△CEF中,根据勾股定理求出CF即可.
详解:(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.
∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.
∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;
(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.
在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.
∴CD=1.又∵,∴.
在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.
点睛:本题考查了平行四边形的性质、三角形的内角和定理及勾股定理等知识,解题的关键是求出∠OEB+∠OED=90°,进而利用勾股定理求解.
18、 (1)(,且为整数);(2)当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
【解析】
(1)根据题意“电子白板和台式电脑合共24台,一台电子白板每台9000元,一台台式电脑每台3000元”即可列出与的函数解析式,又根据“台式电脑的台数不超过电子白板台数的3倍”求出x的取值范围;
(2)根据一次函数的性质即可得随的增大而增大,所以当时,有最小值.
【详解】
解:(1)依题意可得:
,
∵台式电脑的台数不超过电子白板台数的3倍,
∴24-x≤3x
x≥6,
则x的取值范围为,且为整数;
(2)∵,,
∴随的增大而增大,∴当时,有最小值.
(元)
答:当购买电子白板6台,台式电脑18台学校总费用最少钱,最少是108000元.
本题考查了一次函数的性质和应用,解题的关键是读懂题意,找出之间的数量关系列出一次函数,此题难度不大.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
20、AB=CD(答案不唯一)
【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
【详解】
解:添加条件为:AB=CD(答案不唯一);理由如下:
∵AB∥DC,AB=CD,
∴四边形ABCD是平行四边形,
∴AD=BC.
故答案为AB=CD(答案不唯一).
本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
21、12, 1.
【解析】
用BC×AE可求平行四边形的面积,再借助面积12=CD×AF可求AF.
【详解】
解:根据平行四边形的面积=底×高,可得
BC×AE=6×2=12;
则CD×AF=12,即4×AF=12,
所以AF=1.
故答案为12,1.
本题主要考查了平行四边形的性质,面积法求解平行四边形的高或某边长是解决此类问题常用的方法.
22、≠.
【解析】
要使分式有意义,分式的分母不能为1.
【详解】
因为4x+5≠1,所以x≠-.
故答案为≠−.
解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
23、4
【解析】
根据众数概念分析即可解答.
【详解】
数据中出现次数最多的数为众数,故该组数据的众数为4
故答案为:4
本题为考查众数的基础题,难度低,熟练掌握众数概念是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)到甲商店购买所需金额为: y=2.8x+1350;到乙商店购买所需金额为:y=4x+1200;(2)购买白板笔在多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样
【解析】
(1)根据总价=单价×数量的关系,分别列出到甲、乙两商店购买所需金额y与白板笔数量x的关系式,化简即得y与x的一次函数关系式;
(2)根据两个商店购买的钱数,分别由甲大于乙,甲等于乙,甲小于乙列出一次不等式求解即可.
【详解】
(1)到甲商店购买所需金额为:y=50×0.9×30+4×0.7x=2.8x+1350,即y=2.8x+1350,
到乙商店购买30块白板可获赠=75支白板笔,实际应付款y=50×30+4(x-75)=4x+1200,即y=4x+1200.
(2)由2.8x+1350<4x+1200解得x>1,
由2.8x+1350=4x+1200解得x=1,
由2.8x+1350>4x+1200解得x<1.
答:购买白板笔多于1支时到甲商店,少于1支时到乙商店,恰好购买1支时到甲商店和到乙商店一样.
考查了一次函数的实际应用,一次不等式的应用,以及分情况讨论的问题,掌握一次函数和一次不等式之间的关系是解题的关键.
25、(1);(2);(3)
【解析】
(1)求出点E纵坐标,把点E坐标代入反比例函数解析式中即可求出k的值,再联立方程组求出点F的坐标;
(2)运用“割补法”,根据求解即可;
【详解】
(1)设点的坐标为(1,a),代入y= y=-x+得,a=2,
∴,
把代入得,
∴
联立方程组得,解得,
∴
(2)分别过点、做轴的垂线段、,如图,
令y=0,则,解得x=7,令x=0,则y=
∴,,
又,,
∵
=
=
=
(3)如图,
设,则有
则,,,
∴,
∴
本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及运用“割补法”求三角形的面积.
26、(1)x≤4;(2)﹣2<x≤3.
【解析】
(1)根据分式不等式的性质求解不等式即可.
(2)首先利用不等式的性质求解单个不等式,再利用数轴表示不等式组的解集.
【详解】
解:(1),
3(3x﹣2)≥5(2x+1)﹣15,
9x﹣6≥10x+5﹣15,
﹣x≥﹣4,
x≤4,
在数轴表示不等式的解集:
(2)
解(1)得:x≤3,
解(2)得:x>﹣2,
不等式组的解集为:﹣2<x≤3,
在数轴上表示为:
本题主要考查分式不等式和不等式组的解,注意等于用实点表示,不等于用空心点表示.
题号
一
二
三
四
五
总分
得分
2024年广东省韶关市曲江初级中学九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024年广东省韶关市曲江初级中学九上数学开学学业水平测试模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省韶关市乐昌市九上数学开学达标检测模拟试题【含答案】: 这是一份2024年广东省韶关市乐昌市九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省东莞市翰林学校九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024年广东省东莞市翰林学校九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。