2024年德州市重点中学九上数学开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四组线段中,可以构成直角三角形的是( )
A.3,4,5B.C.4,5,6D.1,1,2
2、(4分)已知 是方程组 的解,则a+b的值为 ( )
A.2B.-2C.4D.-4
3、(4分)在平行四边形ABCD中,若AB=5 cm, ,则( )
A.CD=5 cm, ,B.BC=5 cm, ,
C.CD=5 cm, ,D.BC=5 cm, ,
4、(4分)如图,在一个高为6米,长为10米的楼梯表面铺地毯,则地毯长度至少是( )
A.6米B.10米C.14米D.16米
5、(4分)平移直线得到直线,正确的平移方式是( )
A.向上平移个单位长度B.向下平移个单位长度
C.向左平移个单位长度D.向右平移个单位长度
6、(4分)若最简二次根式2与是同类二次根式,则a的值为( )
A.B.2C.﹣3D.
7、(4分)已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为( )
A.17B.13C.17或13D.10
8、(4分)人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示是( )米
A.0.77×10–6B.77×10–6C.7.7×10–6D.7.7×10–5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.
10、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
11、(4分)已知a+b=0目a≠0,则=_____.
12、(4分)已知反比例函数的图象经过第一、三象限,则常数的取值范围是_____.
13、(4分)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
(2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
15、(8分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.
(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;
(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.
①试判断四边形AEMF的形状,并说明理由;
②求折痕EF的长.
16、(8分)如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
17、(10分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:
,
,
因为>,所以>,则有<.
请你设计一种方法比较与的大小.
18、(10分)如图,在△ABC中,∠ACB=90°,且DE是△ABC的中位线.延长ED到F,使DF=ED,连接FC,FB.回答下列问题:
(1)试说明四边形BECF是菱形.
(2)当的大小满足什么条件时,菱形BECF是正方形?请回答并证明你的结论.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.
20、(4分)在平面直角坐标系xOy中,一次函数y=kx和y=﹣x+3的图象如图所示,则关于x的一元一次不等式kx<﹣x+3的解集是_____.
21、(4分)如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2; …;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.
22、(4分)如图,已知的顶点,,点在轴正半轴上,按以下步骤作图:①以点为圆心,适当长度为半径作弧,分别交边,于点,;②分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;③作射线,交边于点,则点的坐为__________.
23、(4分)如图,△ABC中,BD⊥CA,垂足为D,E是AB的中点,连接DE.若AD=3,BD=4,则DE的长等于_____
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)计算:
(2)若,,求的值
25、(10分)(1)计算:;
(2)先化简,再求值:(-4)÷,其中x=1.
26、(12分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.
(1)求证:CE=CF.
(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;
(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.
①若AE=6,DE=10,求AB的长;
②若AB=BC=9,BE=3,求DE的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A. 3+4=5,能构成直角三角形,故符合题意;
B. 1+()≠3,不能构成直角三角形,故不符合题意;
C. 4+5≠6,不能构成直角三角形,故不符合题意;
D. 1+1≠2,不能构成直角三角形,故不符合题意。
故选:A.
此题考查勾股定理的逆定理,解题关键在于利用勾股定理进行计算.
2、B
【解析】
∵是方程组的解
∴将代入①,得a+2=−1,∴a=−3.
把代入②,得2−2b=0,∴b=1.
∴a+b=−3+1=−2.
故选B.
3、C
【解析】
根据平行四边形性质得出AB=CD=5cm,∠B=∠D=55°,即可得出选项.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,∠B=∠D,
∵AB=5cm,∠B=55°,
∴CD=5cm,∠D=55°,
故选:C.
本题考查了平行四边形的性质,掌握知识点是解题关键.
4、C
【解析】
当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.
【详解】
解:由勾股定理得:
楼梯的水平宽度,
地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,
∴地毯的长度至少是米.
故选:C.
本题考查了勾股定理的应用,与实际生活相联系,加深了学生学习数学的积极性.
5、A
【解析】
根据“上加下减”法则进行判断即可.
【详解】
将直线向上平移个单位长度得到直线,
故选:A.
本题主要考查了函数图像平移的性质,熟练掌握相关平移特点是解题关键.
6、B
【解析】
根据题意,它们的被开方数相同,列出方程求解.
【详解】
∵最简二次根式2与是同类二次根式,
∴3a﹣1=a+3,解得a=2,
故选:B.
此题考查同类二次根式的定义,最简二次根式的特点,正确理解题意列出方程是解题的关键.
7、A
【解析】
分3是腰长与底边两种情况讨论求解.
【详解】
解:①3是腰长时,三角形的三边分别为7、3、3,
3+3=6<7,不能组成三角形;
②3是底边长时,三角形的三边分别为7、7、3,
能组成三角形,周长=7+7+3=17,
综上所述,这个等腰三角形的周长是17,
故选:A.
本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.
8、C
【解析】
分析:对于一个绝对值小于1的非0小数,用科学记数法写成 的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).
详解:0.0000077=7.7×10–6.
故选C.
点睛:本题考查了负整数指数科学计数法, 根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
10、x<
【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,
解得m,
∴点A的坐标是(,3),
∴不等式2x<ax+4的解集为x<.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
11、1
【解析】
先将分式变形,然后将代入即可.
【详解】
解:
,
故答案为1
本题考查了分式,熟练将式子进行变形是解题的关键.
12、k>
【解析】
【分析】根据反比例函数图象经过第一、三象限,可得2k-1>0,解不等式即可得.
【详解】由题意得:2k-1>0,
解得:k>,
故答案为k>.
【点睛】本题考查了反比例函数的图象与性质,对于反比例函数y=,当k>0时,图象位于一、三象限,在每一象限内,y随着x的增大而减小;当k<0时,图象位于二、四象限,在每一象限内,y随着x的增大而增大.
13、1
【解析】
试题解析:∵a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,
∴a2-1a+m=0①,a2-1a-m=0②,
①+②,得2(a2-1a)=0,
∵a>0,
∴a=1.
考点:一元二次方程的解.
三、解答题(本大题共5个小题,共48分)
14、(1)排名顺序为乙、甲、丙;(2)录用甲.
【解析】
(1)分别求出甲、乙、丙的平均数,然后进行比较即可;
(2)由题意可知,只有乙不符合规定,甲:84×60%+80×30%+88×10%=83.2,丙:81×60%+84×30%+78×10%=81.6,所以录用甲.
【详解】
解:(1),
,
,
∴,
∴排名顺序为乙、甲、丙.
(2)由题意可知,只有乙不符合规定,
∵,
,
∵
∴录用甲.
本题考查了平均数与加权平均数,熟练运用平均数与加权平均数公式是解题的关键.
15、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②
【解析】
(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;
(2)①根据四边相等的四边形是菱形证明即可;
②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.
【详解】
(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,
∴EF⊥AB,△AEF≌△DEF,
∴S△AEF=S△DEF,
∵S△ADE=S四边形BCDE,
∴S△ABC=4S△AEF,
在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,
∴AC=8,
∵∠EAF=∠BAC,
∴Rt△AEF∽Rt△ABC,
∴,即,
∴AE=1(负值舍去),
由折叠知,DE=AE=1.
(2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,
∴AE=EM,AF=MF,∠AFE=∠MFE,
∵ME∥AB,
∴∠AFE=∠FEM
∴∠MFE=∠FEM,
∴ME=MF,
∴AE=EM=MF=AF,
∴四边形AEMF为菱形.
②设AE=x,则EM=x,CE=8−x,
∵四边形AEMF为菱形,
∴EM∥AB,
∴△CME∽△CBA,
∴,
即,
解得x=,CM=,
在Rt△ACM中,AM=,
∵S菱形AEMF=EF•AM=AE•CM,
∴EF=2×.
本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.
16、(1);;(2)或;(3)点P的坐标为(3,0)或(-5,0).
【解析】
(1)根据反比例函数的图象经过,利用待定系数法即可求出反比例函数的解析式;进而求得的坐标,根据、点坐标,进而利用待定系数法求出一次函数解析式;
(2)根据、的坐标,结合图象即可求得;
(3)根据三角形面积求出的长,根据的坐标即可得出的坐标.
【详解】
解:(1)反比例函数的图象经过,
.
反比例函数的解析式为.
在上,所以.
的坐标是.
把、代入.得:,
解得,
一次函数的解析式为.
(2)由图象可知:不等式的解集是或;
(3)设直线与轴的交点为,
把代入得:,
,
的坐标是,
为轴上一点,且的面积为10,,,
,
,
当在负半轴上时,的坐标是;
当在正半轴上时,的坐标是,
即的坐标是或.
本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.
17、方法见解析.
【解析】
【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.
【详解】 ,
,
∵,
∴,
∵, ,
∴ .
【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.
18、(1)见解析;(2)当∠A=45°时,菱形BECF是正方形.
【解析】
分析:(1)根据已知条件发现:可以证明四边形的对角线互相垂直平分即是一个菱形.
(2)菱形要是一个正方形,则根据正方形的对角线平分一组对角,即∠BEF=45°,则∠A=45°.
详(1)证明:∵DE是△ABC的中位线,
∴DE∥AC.
又∵∠ACB=90°,
∴EF⊥BC.
又∵BD=CD,DF=ED,
∴四边形BECF是菱形.
(2)解:要使菱形BECF是正方形
则有BE⊥CE
∵E是△ABC的边AB的中点
∴当△CBA是等腰三角形时,满足条件
∵∠BCA=90°
∴△CBA是等腰直角三角形
∴当∠A=45°时,菱形BECF是正方形.
点睛:(1)熟悉菱形的判定方法;(2)探索性的试题,可以从若要满足结论,则需具备什么条件进行分析.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4.1.
【解析】
直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.
【详解】
∵∠C=90°,AC=1,BC=6,∴AB2.
∵CD⊥AB,∴DC×AB=AC×BC,∴DC4.1.
故答案为:4.1.
本题考查了勾股定理,正确利用直角三角形面积求法是解题的关键.
20、x<1
【解析】
观察图象即可得不等式kx<-x+3的解集是x<1.
点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系,会利用数形结合思想是解决本题的关键.
21、
【解析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.
【详解】
平分 ,
.
平分 ,
.
.
同理可得:
;
......
本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.
22、
【解析】
根据勾股定理可得Rt△AOH中,AO=,根据∠AGO=∠AOG,即可得到AG=AO=,进而得到HG=-1,故可求解.
【详解】
如图,∵的顶点,,
∴AH=1,HO=2,
∴Rt△AOH中,AO=,
由题可知,OF平方∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=-1,
∴G
故填:.
此题主要考查坐标与图形,解题的关键是熟知等腰三角形和勾股定理的性质运用.
23、2.1
【解析】
根据勾股定理求出AB,根据直角三角形斜边上中线性质得出DE=AB,代入求出即可.
【详解】
.解:∵BD⊥CA,
∴∠ADB=90°,
在Rt△ADB中,由勾股定理得:AB= ==1,
∵E是AB的中点,∠ADB=90°,
∴DE=AB=2.1,
故答案为:2.1.
本题考查了勾股定理和直角三角形斜边上中线的性质,能求出AB的长和得出DE=AB是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1;(2).
【解析】
(1)根据绝对值的性质、二次根式的化简及零指数幂的性质依次计算后,再合并即可求解;(2)先计算出a+b=-1,ab=,再把化为,最后整体代入求值即可.
【详解】
(1)
=
=1;
(2)∵,,
∴a+b=+()=-1,ab=()×()=,
∴=.
本题考查了二次根式的混合运算,熟练运用运算法则是解决问题的关键.
25、(1)-1;(2)x-2,-1
【解析】
(1)先通分,再把分子相加减即可;
(2)先算括号里面的,再算除法即可.
【详解】
解:(1)原式=
==
=-1;
(2)原式=•
=•
=x-2,
当x=1时,原式=1-2=-1.
本题考查的是分式的混合运算,熟知分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的是解答此题的关键.
26、(1)证明见解析;(2)成立;(3)①12;②7.1
【解析】
(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;
(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;
(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,
①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;
②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.
【详解】
解:(1)在正方形ABCD中,
∵BC=CD,∠B=∠ADC,
∴∠B=∠CDF,
∵BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)成立,由(1)知,△CBF≌△CDE,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,
∴∠ECF=∠BCD=90°,
∵∠GCE=41°,
∴∠GCF=∠GCE=41°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)如图2,过点C作CH⊥AD交AD的延长线于H,
∵AD∥BC,∠B=90°,
∴∠A=90°,
∵∠CHA=90°,
∴四边形ABCH为矩形,
∵AB=BC,
∴矩形ABCH为正方形,
∴AH=BC=AB,
①∵AE=6,DE=10,根据勾股定理得,AD=8,
∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设BE=x,
∴10+x=DH,
∴DH=10-x,
∵AH=AB,
∴8+10-x=x+6,
∴x=6,
∴AB=12;
②∵∠DCE=41°,
由(1)(2)知,ED=BE+DH,
设DE=a,
∴a=3+DH,
∴DH=a-3,
∵AB=AH=9,
∴AD=9-(a-3)=12-a,AE=AB-BE=6,
根据勾股定理得,DE2=AD2+AE2,
即:(12-a)2+62=a2,∴a=7.1,
∴DE=7.1.
本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.
题号
一
二
三
四
五
总分
得分
笔试
面试
体能
甲
84
80
88
乙
94
92
69
丙
81
84
78
2024年北京市西城区数学九上开学学业质量监测试题【含答案】: 这是一份2024年北京市西城区数学九上开学学业质量监测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京大附中数学九上开学学业质量监测试题【含答案】: 这是一份2024年北京大附中数学九上开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。