重庆市实验学校2025届数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于( )
A.2B.4C.6D.8
2、(4分)下列调查中,适宜采用普查方式的是( )
A.调查一批新型节能灯泡的使用寿命
B.调查常熟市中小学生的课外阅读时间
C.对全市中学生观看电影《厉害了,我的国》情况的调查
D.对卫星“张衡一号”的零部件质量情况的调查
3、(4分)如图,中俄“海上联合—2017”军事演习在海上编队演习中,两艘航母护卫舰从同一港口O同时出发,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时速度航行,离开港口1.5小时后它们分别到达A,B两点,相距30海里,则二号舰航行的方向是( )
A.南偏东30°B.北偏东30°C.南偏东 60°D.南偏西 60°
4、(4分)定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是( )
A.B.C.D.3
5、(4分)某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
A.B.
C.D.
6、(4分)下列方程中是关于x的一元二次方程的是( )
A.x=x2﹣3B.ax2+bx+c=0
C.D.3x2﹣2xy﹣5y2=0
7、(4分)函数的自变量取值范围是( )
A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0
8、(4分)如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于( )
A.15°B.25°C.35°D.65°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.
10、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
11、(4分)如果一组数据的方差为,那么这组数据的标准差是________.
12、(4分)某公司招聘考试分笔试和面试两项,其中笔试按,面试按计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分.
13、(4分)如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.
三、解答题(本大题共5个小题,共48分)
14、(12分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量保持不变,容器内水量(单位:)与时间(单位:)的部分函数图象如图所示,请结合图象信息解答下列问题:
(1)求出水管的出水速度;
(2)求时容器内的水量;
(3)从关闭进水管起多少分钟时,该容器内的水恰好放完?
15、(8分)分解因式:
16、(8分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.
(1)求这个数据的平均数、众数和中位数.
(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.
17、(10分)计算:+(2﹣π)0﹣()
18、(10分)如图,E为正方形ABCD内一点,点F在CD边上,且∠BEF=90°,EF=2BE.点G为EF的中点,点H为DG的中点,连接EH并延长到点P,使得PH=EH,连接DP.
(1)依题意补全图形;
(2)求证:DP=BE;
(3)连接EC,CP,猜想线段EC和CP的数量关系并证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)菱形ABCD的对角线cm,,则其面积等于______.
20、(4分)计算:(2﹣1)(1+2)=_____.
21、(4分)若关于有增根,则_____;
22、(4分)当m=_____时,是一次函数.
23、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的对角线,相交于点,,是上的两点,并且,连接,.
(1)求证;
(2)若,连接,,判断四边形的形状,并说明理由.
25、(10分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.
26、(12分)如图,矩形的面积为20cm2,对角线交于点,以AB、AO为邻边作平行四边形,对角线交于点;以为邻边作平行四边形;…;依此类推,则平行四边形的面积为______,平行四边形的面积为______.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
求出AD,在Rt△BDA中,根据勾股定理求出BD即可.
【详解】
∵AB=AC=10,CD=4,
∴AD=10-4=6,
∵BD是AC边上的高,
∴∠BDA=90°,
在Rt△BDA中
由勾股定理得:,
故选:D.
本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.
2、D
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
A.调查一批新型节能灯泡的使用寿命适合抽样调查;
B.调查盐城市中小学生的课外阅读时间适合抽样调查;
C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;
D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,
故选D.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、C
【解析】
【分析】由题意可知OA=18,OB=24,AB=30,由勾股定理逆定理可知∠AOB=90°,结合方位角即可确定出二号舰的航行方向.
【详解】如图,由题意得:OA=12×1.5=18,OB=16×1.5=24,
∵AB=30,
∴OA2+OB2=182+242=900=302=AB2,
∴∠AOB=90°,
∵∠AOC=30°,
∴∠BOC=∠AOB-∠AOC=60°,
∴二号舰航行的方向是南偏东 60°,
故选C.
【点睛】本题考查了方位角、勾股定理逆定理,熟练掌握勾股定理逆定理是解本题的关键.
4、B
【解析】
添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB , 利用三角形的面积公式和平行四边形的面积公式,就可求出结果.
【详解】
解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,
∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,
∴OB=PA,OA=PB
∵点P的斜角坐标为(1,2),
∴OA=1,OB=2,
∴PB=1,PA=2,
∵PM⊥x轴,PN⊥y轴,
∴∠PMA=∠PNB=90°,
在Rt△PAM中,∠PAM=60°,则∠APM=30°,
∴PA=2AM=2,即AM=1
PM=PAsin60°
∴PM=
∴S△PAM=
在Rt△PBN中,∠PBN=60°,则∠BPN=30°,
∴PB=2BN=1,即BN=
PN=PBsin60°
∴PN=
∴S△PBN=,
∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB
故答案为:B
本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.
5、C
【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
【详解】
解:原计划用时为:,实际用时为:.
所列方程为:,
故选C.
本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
6、A
【解析】
根据一元二次方程的定义即可解答.
【详解】
选项A,由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;
选项B,当a=0时,该方程不是一元二次方程,故本选项错误;
选项C,该方程不是整式方程,故本选项错误;
选项D,该方程属于二元二次方程,故本选项错误;
故选A.
本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:(1)只含有一个未知数,未知数的最高次数是2;(2)二次项系数不为0;(3)方程为整式方程.
7、B
【解析】
由题意得:x+1>0,
解得:x>-1.
故选B.
8、B
【解析】
分析:由在▱ABCD中,∠B=65°,根据平行四边形的对角相等,即可求得∠D的度数,继而求得答案.
详解:∵四边形ABCD是平行四边形,
∴∠D=∠B=65°,
∵AE⊥CD,
∴∠DAE=90°-∠D=25°.
故选B.
点睛:此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.
【详解】
解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,
因为折痕相互垂直平分,所以四边形是菱形,
而菱形的两条对角线分别是两组对角的平分线,
所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.
或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.
故答案为:30°或60°.
本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.
10、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
11、
【解析】
求出9的算术平方根即可.
【详解】
∵S²=9,S==3,
故答案为3
本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.
12、1
【解析】
根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.
【详解】
小明的总成绩为85×60%+90×40%=1(分).
故答案为:1.
本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.
13、1.
【解析】
过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.
【详解】
如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.
则四边形ACFD是平行四边形,
∴AD=CF,
∴AD+BC=BF,
∵梯形ABCD的中位线长是1,
∴BF=AD+BC=1×2=10.
∵AC=BD,AC⊥BD,
∴△BDF是等腰直角三角形,
∴AH=DE=BF=1,
故答案为:1.
本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)
【解析】
(1)设出水管的出水速度为,根据10分钟内的进水量-10分钟内的出水量=20升列方程求解即可;
(2)设当时,与的函数解析式为,用待定系数法求出函数解析式,再令x=8计算即可;
(3)用容器的储水量30升除以(1)中求出的出水速度即可.
【详解】
解:(1)设出水管的出水速度为.
,
解得.
答:出水管的出水速度为.
(2)设当时,与的函数解析式为.
将点,代入,得,解得.
∴.
∴当时,.
答:时容器内的水量为.
(3).
答:从关闭进水管起时,该容器内的水恰好放完.
本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
15、.
【解析】
先提公因式2,再用完全平方公式进行分解即可。
【详解】
解:
.
本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
16、(1)平均数为2;众数为3;中位数为2;(2)216人.
【解析】
(1)根据平均数、众数、中位数的概念求解;
(2)根据样本数据,估计本次活动中读书多于2册的人数.
【详解】
解:(1)由题意得,平均数为:,
读书册数为3的人数最多,即众数为3,
第25人和第26人读数厕所的平均值为中位数,及中位数为:,
(2)(人.
答:估计七年级读书多于2册的有216人.
本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.
17、3.
【解析】
根据实数运算法则进行计算,特别要注意二次根式的运算法则.
【详解】
解:原式
=3
本题考核知识点:实数运算. 解题关键点:掌握实数运算法则,重点是二次根式运算法则.
18、(1)详见解析;(2)详见解析;(3)详见解析
【解析】
(1)根据题意可以画出完整的图形;
(2)由EF=2BE,点G为EF的中点可知,要证明DP=BE,只要证明DP=EG即可,要证明DP=EG,只要证明ΔPDH≌ΔEGH即可,然后根据题目中的条件和全等三角形的判定即可证明结论成立;
(3)首先写出线段EC和CP的数量关系,然后利用全等三角形的判定和性质即可证明结论成立.
【详解】
解:(1)依题意补全图形如下:
(2)∵点H为线段DG的中点,
∴DH=GH.
在ΔPDH和ΔEGH中,
∵EH=PH,∠EHG=∠PHD,
∴ΔPDH≌ΔEGH(SAS).
∴DP=EG.
∵G为EF的中点,
∴EF=2EG.
∵EF=2EB,
∴BE=EG=DP.
(3)猜想:EC=CP.
由(2)可知ΔPDH≌ΔEGH.
∴∠HEG=∠HPD.
∴DP∥EF.
∴∠PDC=∠DFE.
又∵∠BEF=∠BCD=90°,
∴∠EBC+∠EFC=180°.
又∵∠DFE+∠EFC=180°,
∴∠EBC=∠DFE=∠PDC.
∵BC=DC,DP=BE,
∴ΔEBC≌ΔPDC(SAS).
∴EC=PC.
故答案为(1)详见解析;(2)详见解析;(3)详见解析.
本题考查全等三角形的判定与性质、直角三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据菱形的性质,菱形的面积等于两条对角线乘积的一半,代入数值计算即可。
【详解】
解:菱形ABCD的面积=
=
=
本题考查了菱形的性质:菱形的面积等于两条对角线乘积的一半。
20、7
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=(2)2-1
=8-1
=7,
故答案为:7.
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
21、1
【解析】
方程两边都乘以最简公分母(x –1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.
【详解】
解:方程两边都乘(x﹣1),得
1-ax+3x=3x﹣3,
∵原方程有增根
∴最简公分母x﹣1=0,即增根为x=1,
把x=1代入整式方程,得a=1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.
22、3或0
【解析】
根据一次函数的定义即可求解.
【详解】
依题意得m-3≠0,2m+1=1或m-3=0,
解得m=0或m=3,
故填:3或0.
此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
23、①④
【解析】
矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)四边形BEDF是矩形,理由详见解析.
【解析】
(1)已知四边形ABCD是平行四边形,根据平行四边形的性质可得OA=OC,OB=OD,由AE=CF即可得OE=OF,利用SAS证明△BOE≌△DOF, 根据全等三角形的性质即可得BE=DF;(2)四边形BEDF是矩形.由(1)得OD=OB,OE=OF, 根据对角线互相平方的四边形为平行四边形可得四边形BEDF是平行四边形, 再由BD=EF,根据对角线相等的平行四边形为矩形即可判定四边形EBFD是矩形.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(SAS),
∴BE=DF;
(2)四边形BEDF是矩形.理由如下:
如图所示:
∵OD=OB,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
本题考查了平行四边形的性质及判定、矩形的判定,熟练运用相关的性质及判定定理是解决问题的关键.
25、135º.
【解析】
在直角△ABC中,由勾股定理求得AC的长,在△ACD中,因为已知三角形的三边的长,可用勾股定理的逆定理判定△ACD是不是直角三角形.
【详解】
解:∵∠B=90°,AB=BC=2,
∴AC==2,∠BAC=45°,
又∵CD=3,DA=1,
∴AC2+DA2=8+1=9,CD2=9,
∴AC2+DA2=CD2,
∴△ACD是直角三角形,
∴∠CAD=90°,
∴∠DAB=45°+90°=135°.
26、
【解析】
根据矩形的性质求出△AOB的面积等于矩形ABCD的面积的,求出△AOB的面积,再分别求出△ABO1、△ABO2、△ABO3、△ABO4的面积,求出平行四边形的面积,然后再观察发现规律进行解答.
【详解】
解:∵四边形ABCD是矩形,
∴AO=CO,BO=DO,DC∥AB,DC=AB,
∴S△ADC=S△ABC=S矩形ABCD=×20=10,
∴S△AOB=S△BCO=S△ABC=×10=5,
∴S△ABO1=S△AOB=×5=,
∴S△ABO2=S△ABO1=,
S△ABO3=S△ABO2=,
S△ABO4=S△ABO3=,
∴S平行四边形AO4C5B=2S△ABO4=2×=,
∴平行四边形的面积为:,
故答案为:,.
本题考查了三角形的面积,矩形的性质,平行四边形的性质的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.
题号
一
二
三
四
五
总分
得分
册数
人数
重庆市第二外国语学校2025届九上数学开学教学质量检测模拟试题【含答案】: 这是一份重庆市第二外国语学校2025届九上数学开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省郑州市郑东新区实验学校2025届九上数学开学教学质量检测模拟试题【含答案】: 这是一份河南省郑州市郑东新区实验学校2025届九上数学开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆实验学校数学九上开学质量检测模拟试题【含答案】: 这是一份2025届重庆实验学校数学九上开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。