年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】

    2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】第1页
    2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】第2页
    2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】

    展开

    这是一份2024-2025学年重庆市涪陵第十九中学数学九上开学考试试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是( ).
    A.B.C.D.
    2、(4分)共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是( )
    A.B.
    C.D.
    3、(4分)若,则( )
    A.7B.-7C.5D.-5
    4、(4分)如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )
    A.2B.
    C.D.
    5、(4分)如果5x=6y,那么下列结论正确的是( )
    A.B.C.D.
    6、(4分)如图所示,“数轴上的点并不都表示有理数,如图中数轴上的点P所表示的数是”,这种说明问题的方式体现的数学思想方法叫做( )
    A.代入法B.换元法C.数形结合D.分类讨论
    7、(4分)如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
    A.①②B.②③C.①②④D.①②③④
    8、(4分)下列调查中,调查方式选择不合理的是( )
    A.调查我国中小学生观看电影厉害了,我的国情况,采用抽样调查的方式
    B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式
    C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式
    D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为_____.
    10、(4分)一个n边形的每一个内角等于108°,那么n=_____.
    11、(4分)若分式的值是0,则x的值为________.
    12、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
    13、(4分)如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP = 3,PE⊥PB交CD于点E,则PE =____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知一次函数.
    (1)当m取何值时,y随x的增大而减小?
    (2)当m取何值时,函数的图象过原点?
    15、(8分)某食品商店将甲、乙、丙3种糖果的质量按配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/、20元/、27元/.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.
    16、(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
    (1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
    (2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
    (3)直接写出点B2,C2的坐标.
    17、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.
    18、(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是____m.
    20、(4分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .
    21、(4分)若是方程的解,则代数式的值为____________.
    22、(4分)如果点A(1,n)在一次函数y=3x﹣2的图象上,那么n=_____.
    23、(4分)已知y=++9,则(xy-64)2的平方根为______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在矩形中,,,是边上一点,以点为直角顶点,在的右侧作等腰直角.
    (1)如图1,当点在边上时,求的长;
    (2)如图2,若,求的长;
    (3)如图3,若动点从点出发,沿边向右运动,运动到点停止,直接写出线段的中点的运动路径长.
    25、(10分)计算:(1)-;
    (2)(1-)
    26、(12分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像
    (1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;
    (2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的高一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.
    【详解】
    从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);
    因为从点C到点D,△ABP的面积一定:2×1÷2=1,
    所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),
    所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:

    故选B.
    此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.
    2、B
    【解析】
    直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.
    【详解】
    解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:
    (1+x)2=1.1.
    故选:B.
    此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    3、D
    【解析】
    根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.
    【详解】
    因为,所以,
    所以
    故答案选D.
    本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.
    4、D
    【解析】
    将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.
    【详解】
    将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:
    则阴影面积=
    =
    =
    故选:D
    本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.
    5、A
    【解析】
    试题解析:A, 可以得出:
    故选A.
    6、C
    【解析】
    本题利用实数与数轴上的点对应关系结合数学思想即可求解答.
    【详解】
    解:如图在数轴上表示点P,这是利用直观的图形--数轴表示抽象的无理数,
    ∴说明问题的方式体现的数学思想方法叫做数形结合,
    ∴A,B,D的说法显然不正确.
    故选:C.
    本题考查的是数学思想方法,做这类题可用逐个排除法,显然A,B,D所说方法不对.
    7、D
    【解析】
    过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到
    ,,求得,得到,于是得到,故④正确.
    【详解】
    解:过O作于G,于H,
    ∵四边形是正方形,

    ,,
    ∵点O是对角线BD的中点,
    ,,
    ,,

    ,,
    ∴四边形是正方形,



    在与中,


    ,故①正确;,

    ,故②正确;

    ∴四边形的面积正方形的面积,
    ∴四边形的面积保持不变;故③正确;

    ,,




    ,故④正确;
    故选:.
    本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.
    8、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    A、调查我国中小学生观看电影厉害了,我的国情况,采用抽样调查的方式是合理的;
    B、调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式是合理的;
    C、调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式是合理的;
    D、调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式是不合理的,
    故选D.
    本题考查了抽样调查与全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、100(1+x)2=1
    【解析】分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
    详解:设该果园水果产量的年平均增长率为x,根据题意,得:
    100(1+x)2=1,
    故答案为:100(1+x)2=1.
    点睛:本题考查了由实际问题抽象出一元二次方程;得到2013年产量的等量关系是解决本题的关键.
    10、1
    【解析】
    首先求得外角的度数,然后利用360度除以外角的度数即可求得.
    【详解】
    解:外角的度数是:180°﹣108°=72°,
    则n==1,
    故答案为1.
    本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
    11、3
    【解析】
    根据分式为0的条件解答即可,
    【详解】
    因为分式的值为0,
    所以∣x∣-3=0且3+x≠0,
    ∣x∣-3=0,即x=3,
    3+x≠0,即x≠-3,
    所以x=3,
    故答案为:3
    本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.
    12、6
    【解析】
    连接BD,证明△ECA≌△DCB,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.
    【详解】
    连接BD,
    ∵△ACB和△ECD都是等腰直角三角形,
    ∴CE=CD,CA=CB,∠ECD=∠ACB=90°,
    ∴∠EDC=∠E=45°,∠ECA=∠DCB,
    在△ACE和△BCD中,

    ∴△ECA≌△BDC,
    ∴DB=AE=4,∠BDC=∠E=45°,
    ∴∠ADB=∠EDC+∠BDC=90°,
    ∴AD=,
    故答案为6.
    本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.
    13、
    【解析】
    连接BE,设CE的长为x
    ∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
    ∴∠BAP=∠PCE=45°,AP=4-3=
    ∴BP2=AB2+AP2-2AB×AP×cs∠BAP=42+()2-2×4××=10
    PE2=CE2+CP2-2CE×CP×cs∠PCE=(3)2+x2-2x×3×=x2-6x+18
    BE2=BC2+CE2=16+x2 在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
    ∴PE2=22-6×2+18=10 ∴PE=.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ;(2)
    【解析】
    (1)根据k<0即可求解;
    (2)把(0,0)代入即可求解.
    【详解】
    (1)由得
    (2)
    解得
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.
    15、这样定价不合理,理由见解析
    【解析】
    根据加权平均数的概念即可解题.
    【详解】
    解:这样定价不合理.
    (元/).
    答:该什锦糖果合理的单价为18.7元/.
    本题考查了加权平均数的实际计算,属于简单题,熟悉加权平均数的概念是解题关键.
    16、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).
    【解析】
    试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
    (2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.
    试题解析:解:(1)如图,△A1B1C1即为所求;
    (2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).
    17、投递快递总件数的月平均增长率是10%.
    【解析】
    设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.
    【详解】
    解:设投递快递总件数的月平均增长率是x,
    依题意,得:30(1+x)2=36.3
    则1+x=±1.1
    解得:x1=0.1=10%,x2=−2.1(舍),
    答:投递快递总件数的月平均增长率是10%.
    考核知识点:一元二次方程的应用.理解增长率是关键.
    18、见解析
    【解析】
    由ASA证明△AOE≌△COF,得出对应边相等EO=FO,证出四边形AFCE为平行四边形,再由FE⊥AC,即可得出结论.
    【详解】
    解:证明:因为四边形的矩形

    因为平分
    .

    所以四边形是平行四边形
    所以四边形是菱形(对角线互相垂直的平行四边形是菱形)
    本题考查了矩形的性质、菱形的判定方法、平行四边形的判定方法、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、12
    【解析】
    ∵直角三角形的斜边长为15m,一直角边长为9m,
    ∴另一直角边长=,
    故梯子可到达建筑物的高度是12m.
    故答案是:12m.
    20、
    【解析】
    试题分析:根据题意得,等腰△ABC中,OA=OB=3,由等腰三角形的性质可得OC⊥AB,根据勾股定理可得OC=,又因OM=OC=,于是可确定点M对应的数为.
    考点:勾股定理;实数与数轴.
    21、1
    【解析】
    根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
    【详解】
    解:∵a是方程x2-2x-1=0的一个解,
    ∴a2-2a=1,
    则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
    故答案为:1.
    本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
    22、1
    【解析】
    把点A的坐标代入一次函数y=3x﹣2解析式中,即可求出n的值.
    【详解】
    ∵点A(1,n)在一次函数y=3x﹣2的图象上,
    ∴n=3×1﹣2=1.
    故答案为:1.
    本题考查了点在一次函数图象上的条件,即点的坐标满足一次函数解析式,正确计算是解题的关键.
    23、±1
    【解析】
    根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
    【详解】
    解:由题意得:,
    解得:x=7,
    则y=9,
    (xy-64)2=1,
    1的平方根为±1,
    故答案为:±1.
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)线段的中点的运动路径长为.
    【解析】
    (1)如图1中,证明△ABE≌△ECF(AAS),即可解决问题.
    (2)如图2中,延长DF,BC交于点N,过点F作FM⊥BC于点M.证明△EFM≌△DNC(AAS),设NC=FM=x,利用勾股定理构建方程即可解决问题.
    (3)如图3中,在BC上截取BM=BA,连接AM,MF,取AM的中点H,连接HQ.由△ABE∽△AMF,推出∠AMF=∠ABE=90°,由AQ=FQ,AH=MH,推出,HQ∥FM,推出∠AHQ=90°,推出点Q的运动轨迹是线段HQ,求出MF的长即可解决问题.
    【详解】
    (1)如图1中,
    四边形是矩形,

    ,,
    ,,



    (2)如图2中,延长,交于点,过点作于点.
    同理可证,
    设,则,
    ,,



    ,,,
    即在中,,
    在中,,
    在中,,
    即,解得或(舍弃),即,
    (3)如图3中,在上截取,连接,,取的中点,连接.




    ,,
    ,,
    ,,

    点的运动轨迹是线段,
    当点从点运动到点时,,


    线段的中点的运动路径长为.
    本题考查了全等三角形、勾股定理、相似三角形,掌握矩形的性质及全等三角形的性质和判定、利用勾股定理列方程、相似三角形的性质是解题的关键.
    25、(1);(2)a+1
    【解析】
    (1)直接化简二次根式进而合并得出答案;
    (2)直接将括号里面通分进而利用分式的混合运算法则计算即可.
    【详解】
    (1)原式=2-+3
    =;
    (2)原式=×
    =a+1.
    此题主要考查了分式的混合运算以及二次根式的加减运算,正确掌握相关运算法则是解题关键.
    26、(1)
    (2)3小时
    【解析】
    (1)设,根据题意得
    ,解得
    (2)当时,
    ∴骑摩托车的速度为(千米/时)
    ∴乙从A地到B地用时为(小时)
    【详解】
    请在此输入详解!
    题号





    总分
    得分

    相关试卷

    2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】:

    这是一份2024-2025学年重庆市涪陵区名校数学九上开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年吉林省长春市德惠市第十九中学数学九上开学经典试题【含答案】:

    这是一份2024-2025学年吉林省长春市德惠市第十九中学数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省南阳华龙中学数学九上开学统考试题【含答案】:

    这是一份2024-2025学年河南省南阳华龙中学数学九上开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map