2024-2025学年芜湖无为县联考数学九上开学检测试题【含答案】
展开这是一份2024-2025学年芜湖无为县联考数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )
A.36B.30C.24D.20
2、(4分)如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为( )
A.15°B.22.5°C.30°D.45°
3、(4分)下列函数中,一定是一次函数的是
A.B.C.D.
4、(4分)下列图案中,中心对称图形的是( )
A.B.C.D.
5、(4分)用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是( )
A.(x+2)2=2B.(x﹣2)2=﹣2C.(x﹣2)2=2D.(x﹣2)2=6
6、(4分)已知一次函数y = 2x +b ,其中b<0,函数图象可能是( )
A.AB.BC.CD.D
7、(4分)在平面直角坐标系中,点(–1,–2)在第( )象限.
A.一 B.二 C.三 D.四
8、(4分)方程x(x﹣1)=0的根是( )
A.x=0B.x=1C.x1=0,x2=1D.x1=0,x2=﹣1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果关于x的方程bx2=2有实数解,那么b的取值范围是_____.
10、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为 ▲ .
11、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
12、(4分)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打七折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的函数关系如图所示,那么图中a的值是_______.
13、(4分)已知一次函数的图象过点(3,5)与点(-4,-9),则这个一次函数的解析式为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,AE∥BF,AC平分∠BAE,交BF于点C.
(1)求证:AB=BC;
(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)
15、(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
16、(8分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.
(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?
(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由
17、(10分)为了让同学们了解自己的体育水平,八年级1班的体育老师对全班50名学生进行了一次体育模拟测试(得分均为整数).成绩满分为10分,1班的体育委员根据这次测试成绩制作了如下的统计图:
(1)根据统计图所给的信息填写下表:
(2)若女生队测试成绩的方差为1.76,请计算男生队测试成绩的方差.并说明在这次体育测试中,哪个队的测试成绩更整齐些?
18、(10分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.
(1)求证:ED=EF;
(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为 _________________
20、(4分)已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是____.
21、(4分)在平面直角坐标系中,点P(1,-3)关于原点O对称的点的坐标是________.
22、(4分)某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
23、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形中,点分别是上的点,且.求证:.
25、(10分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.
26、(12分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.
2、B
【解析】
根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.
【详解】
∵四边形ABCD是矩形,AE⊥BD,
∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
∴∠BAE=∠ADE
∵矩形对角线相等且互相平分,
∴∠OAB=∠OBA=,
∴∠BAE=∠ADE=90﹣67.5°=22.5°,
故选 B.
本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.
3、A
【解析】
根据一次函数的定义,逐一分析四个选项,此题得解.
【详解】
解:、,
是一次函数,符合题意;
、自变量的次数为,
不是一次函数,不符合题意;
、自变量的次数为2,
不是一次函数,不符合题意;
、当时,函数为常数函数,不是一次函数,不符合题意.
故选:.
本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.
4、A
【解析】
根据中心对称图形的概念求解.
【详解】
A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、C
【解析】
按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.
【详解】
解:x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,
(x﹣2)2=2,
故选:C.
本题主要考查配方法,掌握完全平方公式是解题的关键.
6、A
【解析】
对照该函数解析式与一次函数的一般形式y=kx+b (k,b为常数,k≠0)可知,k=2. 故k>0,b<0.
A选项:由图象知,k>0,b<0,符合题意. 故A选项正确.
B选项:由图象知,k<0,b<0,不符合题意. 故B选项错误.
C选项:由图象知,k>0,b>0,不符合题意. 故C选项错误.
D选项:由图象知,k<0,b>0,不符合题意. 故D选项错误.
故本题应选A.
点睛:
本题考查了一次函数的图象与性质. 一次函数解析式的系数与其图象所经过象限的关系是重点内容,要熟练掌握. 当k>0,b>0时,一次函数的图象经过一、二、三象限;当k>0,b<0时,一次函数的图象经过一、三、四象限;当k<0,b>0时,一次函数的图象经过一、二、四象限;当k<0,b<0时,一次函数的图象经过二、三、四象限.
7、C
【解析】分析:根据在平面直角坐标系中点的符号特征求解即可.
详解:∵-1<0,-2<0,
∴点(–1,–2)在第三象限.
故选C.
点睛:本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.
8、C
【解析】
由题意推出x=0,或(x﹣1)=0,解方程即可求出x的值.
【详解】
解:∵x(x﹣1)=0,
∴x1=0,x2=1,
故选:C.
此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、b>1.
【解析】
先确定b≠1,则方程变形为x2=,根据平方根的定义得到>1时,方程有实数解,然后解关于b的不等式即可.
【详解】
根据题意得b≠1,
x2=,
当>1时,方程有实数解,
所以b>1.
故答案为:b>1.
本题考查了解一元二次方程−直接开平方法:形如x2=p或(nx+m)2=p(p≥1)的一元二次方程可采用直接开平方的方法解一元二次方程.
10、10+.
【解析】
先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
∵∠ACB=90°,DE⊥BC,∴AC∥DE.
又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.
在Rt△CDE中,DE= 1,CE=2,由勾股定理得.
∵D是BC的中点,∴BC=1CD=2.
在△ABC中,∠ACB=90°,由勾股定理得.
∵D是BC的中点,DE⊥BC,∴EB=EC=2.
∴四边形ACEB的周长=AC+CE+EB+BA=10+.
11、x<1
【解析】
观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
【详解】
由图象可知,当x<1时,有kx+6>x+b,
当x>1时,有kx+6<x+b,
所以,填x<1
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、1.
【解析】
根据题意求出当x≥10时的函数解析式,当y=27时代入相应的函数解析式,可以求得相应的自变量a的值,本题得以解决.
【详解】
解:由题意得每本练习本的原价为:20÷10=2(元),
当x≥10时,函数的解析式为y=0.7×2(x-10)+20=1.4x+6,
当y=27时,1.4x+6=27,解得x=1,
∴a=1.
故答案为:1.
本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,根据关系式可以解答问题.
13、
【解析】
设一次函数的解析式为:,利用待定系数法把已知点的坐标代入解析式,解方程组即可得答案.
【详解】
解:设一次函数的解析式为:,
解得:
所以这个一次函数的解析式为:
故答案为:
本题考查的是利用待定系数法求解一次函数的解析式,掌握待定系数法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)画图见解析.
【解析】
(1)根据平行线的性质和角平分线的定义即可得到结论;
(2)在射线AE上截取AD=AB,根据菱形的判定定理即可得到结论.
【详解】
解:(1)∵AE∥BF,
∴∠EAC=∠ACB,
又∵AC平分∠BAE,
∴∠BAC=∠EAC,
∴∠BAC=∠ACB,
∴BA=BC.
(2)主要作法如下:
本题考查了作图-复杂作图,菱形的判定,正确的作出图形是解题的关键.
15、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
16、 (1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
【解析】
(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.
【详解】
解:(1) 设购买A型号足球x个,B型号足球y个,依题意,得
解之得
答:该校购买A型号足球60个,B型号足球40个;
(2) 设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,
根据题意得w=200m+250(100-m)
=-50m+25000
又∵m≤9(100-m);
∴0
∴w随m的増大而減小
∴当m=90肘w最小
∴最省钱的购买方案为:A型足球90个,B型足球10个.
故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.
本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.
17、(1)8;8;8;(2)女生测试成绩更整齐些
【解析】
(1)根据平均数、众数的定义求解即可;
(2)先计算男生队测试成绩的方差,然后根据方差越小越整齐解答.
【详解】
(1)男生的平均数:(5×1+6×3+7×5+8×7+9×4+10×5) ÷(1+3+5+7+4+5)=8分;
男生的众数:∵8分出现的次数最多,∴众数是8分;
女生的众数:∵8分出现的次数最多,∴众数是8分;
(2)[(5-8)2×1+(6-8)2×3+(7-8)2×5+(8-8)2×7+(9-8)2×4+(10-8)2×5]÷25=2,
∵1.76<2,
∴女生测试成绩更整齐些.
本题考查了平均数、众数、标准差的求法,平均数是指在一组数据中所有数据之和再除以数据的个数.解题的关键是掌握加权平均数和方差公式.
18、 (1)见解析;(2)3.
【解析】
(1)根据题意只要证明EF为△ABC的中位线,即可证明DE=EF.
(2)只要证明为直角三角形,根据勾股定理即可计算DF的长
【详解】
(1)证明:∵∠ADC=90°,E为AC的中点,
∴DE=AE=AC.
∵E、F分别为AC、BC的中点,
∴EF为△ABC的中位线,
∴EF=AB.
∵AB=AC,
∴DE=EF.
(2)解:∵∠BAD=60°,AC平分∠BAD,
∴∠BAC=∠DAC=∠BAD=30°.
由(1)可知EF∥AB,AE=DE,
∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,
∴∠FED=90°.
∵AC=6,
∴DE=EF=3,
∴DF= =3 .
本题主要考查等腰三角形的性质,这是考试的重点知识,应当熟练掌握.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、12
【解析】
∵BD⊥AD,AD=6,AB=10,
,
∴ .
∵四边形ABCD是平行四边形,
20、8
【解析】
根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数, 只要把数x1,x2,x3,x4的和表示出即可.
【详解】
解:x1,x2,x3,x4的平均数为5
x1+x2+x3+x4=45=20,
x1+3,x2+3,x3+3,x4+3的平均数为:
=( x1+3+ x2+3+ x3+3+ x3+3)4
=(20+12) 4
=8,
故答案为:8.
本题主要考查算术平均数的计算.
21、(﹣1,3)
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),然后直接作答即可.
【详解】
根据中心对称的性质,可知:点P(1,−3)关于原点O中心对称的点P`的坐标为(−1,3).
故答案为:(﹣1,3).
此题考查关于原点对称的点的坐标,解题关键在于掌握其性质.
22、众数
【解析】
根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.
【详解】
某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.
故答案为:众数.
本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
23、
【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
【详解】
∵四边形CDEF是正方形,AC=5,BC=12,
∴CD=ED,DE∥CF,
设ED=x,则CD=x,AD=5-x,
∵DE∥CF,
∴∠ADE=∠C,∠AED=∠B,
∴△ADE∽△ACB,
∴,
∴,
解得:x=,
故答案为.
此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
证得∠ADE=∠FAB,由ASA证得△DAE≌△ABF,即可得出结论.
【详解】
四边形是正方形
本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.
25、BC=1.
【解析】
根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,
∵点E为AC的中点,
∴DE=CE=AC=.
∵△CDE的周长为24,
∴CD=9,
∴BC=2CD=1.
此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD⊥BC
26、解:(1)如图所示:点A1的坐标(2,﹣4)。
(2)如图所示,点A2的坐标(﹣2,4)。
【解析】
试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标。
(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2。
题号
一
二
三
四
五
总分
得分
批阅人
平均数(分)
中位数(分)
众数(分)
男生
8
女生
8
8
相关试卷
这是一份2024-2025学年山东省郓城县联考数学九上开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省婺源县联考九上数学开学检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省濮阳县区联考九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。