|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】01
    2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】02
    2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】

    展开
    这是一份2024-2025学年天津市津南区名校数学九上开学教学质量检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)关于一个四边形是不是正方形,有如下条件①对角线互相垂直且相等的平行四边形;②对角线互相垂直的矩形;③对角线相等的菱形;④对角线互相垂直平分且相等的四边形;以上条件,能判定正方形的是( )
    A.①②③B.②③④C.①③④D.①②③④
    2、(4分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
    A.1个B.2个C.3个D.4个
    3、(4分)如图,有一个平行四边形和一个正方形,其中点在边上.若,,则的度数为( )
    A.55ºB.60ºC.65ºD.75º
    4、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是( )
    A.1B.2C.3D.5
    5、(4分)在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
    A.6个B.7个C.8个D.9个
    6、(4分)若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是( )
    A.甲B.乙
    C.同时到达D.无法确定
    7、(4分)菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是( )
    A.4 cmB.cmC.2 cmD.2cm
    8、(4分)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是( )
    A.a=32,b=42,c=52B.a=9,b=12,c=15
    C.∠A:∠B:∠C=5:2:3D.∠C﹣∠B=∠A
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.
    10、(4分)已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.
    11、(4分) 用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.
    12、(4分)正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.
    13、(4分)2﹣6+的结果是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
    (1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
    (2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
    (3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
    15、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.
    16、(8分)如图,DB∥AC,且DB=AC,E是AC的中点,
    (1)求证:BC=DE;
    (2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
    17、(10分)如图:、是锐角的两条高,、分别是、的中点,若EF=6,.
    (1)证明:;
    (2)判断与的位置关系,并证明你的结论;
    (3)求的长.
    18、(10分)如图,,、分别是、的中点,图①是沿将折叠,点落在上,图②是绕点将顺时针旋转.
    (1)在图①中,判断和形状.(填空)_______________________________________
    (2)在图②中,判断四边形的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE=______________cm.
    20、(4分)化简:(2)2=_____.
    21、(4分)分解因式:2x2-8x+8=__________.
    22、(4分)如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).
    23、(4分)如图,在正方形的外侧,作等边,则的度数是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.
    (1)试说明△CEF是等腰三角形.
    (2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.
    25、(10分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;
    ⑴ 分别求出m与n的取值范围;
    ⑵请化简:。
    26、(12分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
    (1)求购买A型和B型公交车每辆各需多少万元?
    (2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
    (3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    利用正方形的判定方法逐一分析判断得出答案即可.
    【详解】
    解:①对角线互相垂直且相等的平行四边形是正方形,故正确;
    ②对角线互相垂直的矩形是正方形,故正确;
    ③对角线相等的菱形是正方形,故正确;
    ④对角线互相垂直平分且相等的四边形是正方形,故正确;
    故选:D.
    本题主要考查正方形的判定方法,掌握正方形的判定方法是解题的关键.
    2、C
    【解析】
    连接EC,作CH⊥EF于H.首先证明△BAD≌△CAE,再证明△EFC是等边三角形即可解决问题;
    【详解】
    连接EC,作CH⊥EF于H.
    ∵△ABC,△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=∠ACB=60°,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴BD=EC=1,∠ACE=∠ABD=60°,
    ∵EF∥BC,
    ∴∠EFC=∠ACB=60°,
    ∴△EFC是等边三角形,CH=,
    ∴EF=EC=BD,∵EF∥BD,
    ∴四边形BDEF是平行四边形,故②正确,
    ∵BD=CF=1,BA=BC,∠ABD=∠BCF,
    ∴△ABD≌△BCF,故①正确,
    ∵S平行四边形BDEF=BD•CH=,
    故③正确,
    ∵△ABC是边长为3的等边三角形,S△ABC=
    ∴S△ABD
    ∴S△AEF= S△AEC=•S△ABD=
    故④错误,
    故选C.
    本题考查平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题,属于中考选择题中的压轴题.
    3、D
    【解析】
    首先根据,结合已知可得的度数,进而计算的度数.
    【详解】
    解:根据平角的性质可得

    又四边形为正方形


    在三角形DEC中



    四边形为平行四边形

    故选D.
    本题主要考查平角的性质和三角形的内角定理,这些是基本知识,必须熟练掌握.
    4、B
    【解析】
    因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
    【详解】
    (1)将这组数据从小到大的顺序排列为2,3,x,4,
    处于中间位置的数是3,x,
    那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
    平均数为(2+3+4+x)÷4,
    ∴(3+x)÷2=(2+3+4+x)÷4,
    解得x=3,大小位置与3对调,不影响结果,符合题意;
    (2)将这组数据从小到大的顺序排列后2,3,4,x,
    中位数是(3+4)÷2=3.1,
    此时平均数是(2+3+4+x)÷4=3.1,
    解得x=1,符合排列顺序;
    (3)将这组数据从小到大的顺序排列后x,2,3,4,
    中位数是(2+3)÷2=2.1,
    平均数(2+3+4+x)÷4=2.1,
    解得x=1,符合排列顺序.
    ∴x的值为1、3或1.
    故选B.
    本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.
    5、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:
    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    6、B
    【解析】
    设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。
    【详解】
    解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,
    而对于乙: 解得:

    因为当a≠b时,(a+b)2>4ab,
    所以<1
    所以t甲>t乙,即甲先到达,故答案为B.
    本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.
    7、C
    【解析】
    如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,
    在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,
    故菱形的另一条对角线AC长为2AO=2cm,故选C.
    点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.
    8、A
    【解析】
    由三角形内角和定理及勾股定理的逆定理进行判断即可.
    【详解】
    A .a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;
    B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;
    C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;
    D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,
    故选A.
    本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或6
    【解析】
    先表示出A、B坐标,分①当∠ABD=90°时,②当∠ADB=90°时,③当∠DAB=90°时,建立等式解出b即可.
    【详解】
    解:①当∠ABD=90°时,如图1,则∠DBC+∠ABO=90°,,
    ∴∠DBC=∠BAO,
    由直线交线段OC于点B,交x轴于点A可知OB=b,OA=b,
    ∵点C(0,6),
    ∴OC=6,
    ∴BC=6-b,
    在△DBC和△BAO中,
    ∴△DBC≌△BAO(AAS),
    ∴BC=OA,
    即6-b=b,
    ∴b=3;
    ②当∠ADB=90°时,如图2,作AF⊥CE于F,
    同理证得△BDC≌△DAF,
    ∴CD=AF=6,BC=DF,
    ∵OB=b,OA=b,
    ∴BC=DF=b-6,
    ∵BC=6-b,
    ∴6-b=b-6,
    ∴b=6;
    ③当∠DAB=90°时,如图3,
    作DF⊥OA于F,
    同理证得△AOB≌△DFA,
    ∴OA=DF,
    ∴b=6;
    综上,b的值为3或6,
    故答案为3或6.
    本题考查了一次函数图像上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,作辅助线构建求得三角形上解题的关键.
    10、0.26
    【解析】
    首先根据平均数算出x的值,然后利用方差的公式进行计算.
    【详解】
    解得:x=3
    故方差为0.26
    本题考查数据方差的计算,务必记住方差计算公式为:
    11、三角形的三个内角都小于60°
    【解析】
    熟记反证法的步骤,直接填空即可.
    【详解】
    第一步应假设结论不成立,即三角形的三个内角都小于60°.
    故答案为三角形的三个内角都小于60°.
    反证法的步骤是:
    (1)假设结论不成立;
    (2)从假设出发推出矛盾;
    (3)假设不成立,则结论成立.
    在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
    12、
    【解析】
    先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.
    【详解】
    解:∵直线y=x+1和y轴交于A1,
    ∴A1的坐标(0,1),即OA1=1,
    ∵四边形C1OA1B1是正方形,
    ∴OC1=OA1=1,
    把x=1代入y=x+1得:y=2,
    ∴A2的坐标为(1,2),
    同理,A3的坐标为(3,4),

    ∴An的坐标为(2n-1-1,2n-1),
    ∴的坐标是,
    故答案为:.
    本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.
    13、
    【解析】
    先把各根式化为最简二次根式,再合并同类项即可.
    【详解】
    原式=-2+2
    =3-2.
    故答案为:3-2.
    本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
    【解析】
    (1)分别算出甲乙丙的平均数,比较即可;
    (2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
    (3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
    【详解】
    (1)甲的平均成绩:
    乙的平均成绩:
    丙的平均成绩:
    ∵80.5>80.25>80
    ∴应该录取丙
    (2)甲的平均成绩:
    乙的平均成绩:
    丙的平均成绩:
    ∵82.1>81>79.1
    ∴应该录取甲
    (3)甲的平均成绩:
    乙的平均成绩:
    丙的平均成绩:
    ∵81.6>80.1>78.8
    ∴应该录取乙.
    本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
    15、投递快递总件数的月平均增长率是10%.
    【解析】
    设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.
    【详解】
    解:设投递快递总件数的月平均增长率是x,
    依题意,得:30(1+x)2=36.3
    则1+x=±1.1
    解得:x1=0.1=10%,x2=−2.1(舍),
    答:投递快递总件数的月平均增长率是10%.
    考核知识点:一元二次方程的应用.理解增长率是关键.
    16、(1)证明见解析(2)添加AB=BC
    【解析】
    试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.
    (2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
    试题解析:(1)证明:∵E是AC中点,
    ∴EC=AC.
    ∵DB=AC,
    ∴DB∥EC.
    又∵DB∥EC,
    ∴四边形DBCE是平行四边形.
    ∴BC=DE.
    (2)添加AB=BC.
    理由:∵DB∥AE,DB=AE
    ∴四边形DBEA是平行四边形.
    ∵BC=DE,AB=BC,
    ∴AB=DE.
    ∴▭ADBE是矩形.
    考点:矩形的判定;平行四边形的判定与性质.
    17、(1)证明见解析;(2)MN垂直平分EF,证明见解析;(3)MN=.
    【解析】
    (1)依据BE、CF是锐角△ABC的两条高,可得∠ABE+∠A=90°,∠ACF+∠A=90°,进而得出∠ABE=∠ACF;
    (2)连接EM、FM,根据直角三角形斜边上的中线等于斜边的一半可得EM=FM=BC,再根据等腰三角形三线合一的性质解答;
    (3)求出EM、EN,然后利用勾股定理列式计算即可得解.
    【详解】
    解:(1)∵BE、CF是锐角△ABC的两条高,
    ∴∠ABE+∠A=90°,∠ACF+∠A=90°,
    ∴∠ABE=∠ACF;
    (2)MN垂直平分EF.
    证明:如图,连接EM、FM,
    ∵BE、CF是锐角△ABC的两条高,M是BC的中点,
    ∴EM=FM=BC,
    ∵N是EF的中点,
    ∴MN垂直平分EF;
    (3)∵EF=6,BC=24,
    ∴EM=BC=×24=12,EN=EF=×6=3,
    由勾股定理得,MN=.
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造出等腰三角形是解题的关键.
    18、(1)和均为等腰三角形;(2)四边形为平行四边形,证明详见解析.
    【解析】
    根据平行线的性质和折叠的性质解答即可;
    (2)由三角形中位线的性质可证,,由旋转的性质可知,从而,然后根据平行四边形的判定方法可证四边形是平行四边形.
    【详解】
    解:(1)和均为等腰三角形.
    ∵DE∥BC,
    ∴∠A′DE=∠BA′D, ∠B=∠ADE,
    ∵∠ADE=∠A′DE,
    ∴∠B=∠BA′D,
    ∴BD=A′D,
    ∴为等腰三角形;
    同理可证CE=A′E,即为等腰三角形.
    (2)四边形为平行四边形.
    理由:、分别是、的中点,
    ,.
    由旋转的性质可知,

    四边形是平行四边形.
    本题考查了折叠的性质,旋转的性质,三角形的中位线,平行线的性质,等腰三角形的判定,以及平行四边形的判定等知识,熟练掌握折叠的性质及旋转的性质是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:此题考查了翻折变换、勾股定理及锐角三角函数的定义,解答本题的关键是掌握翻折变换前后对应边相等、对应角相等,难度一般.
    在RT△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB,在RT△ADE中,利用tanB=tan∠DAE即可得出DE的长度.
    ∵AC=6,BC=8,
    ∴AB==10,tanB=,
    由折叠的性质得,∠B=∠DAE,tanB=tan∠DAE=,
    AE=EB=AB=5,
    ∴DE=AEtan∠DAE=.
    故答案为.
    考点:翻折变换(折叠问题).
    20、1.
    【解析】
    根据二次根式的性质:进行化简即可得出答案.
    【详解】

    故答案为:1.
    本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.
    21、2(x-2)2
    【解析】
    先运用提公因式法,再运用完全平方公式.
    【详解】
    :2x2-8x+8=.
    故答案为2(x-2)2.
    本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
    22、①②④
    【解析】
    根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠B=∠D,
    ∵根据折叠可得∠D=∠NMA,
    ∴∠B=∠NMA,
    ∴MN∥BC;①正确;
    ∵四边形ABCD是平行四边形,
    ∴DN∥AM,AD∥BC,
    ∵MN∥BC,
    ∴AD∥MN,
    ∴四边形AMND是平行四边形,
    根据折叠可得AM=DA,
    ∴四边形AMND为菱形,
    ∴MN=AM;②④正确;
    没有条件证出∠B=90°,④错误;
    故答案为①②④.
    本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.
    23、
    【解析】
    先求出的度数,即可求出.
    【详解】
    解:由题意可得,,

    故答案为:
    本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析(2)见解析
    【解析】
    (1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;
    (2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.
    【详解】
    解:(1)∵∠ACB=90°,
    ∴∠B+∠BAC=90°,
    ∵CD⊥AB,
    ∴∠CAD+∠ACD=90°,
    ∴∠ACD=∠B,
    ∵AE是∠BAC的平分线,
    ∴∠CAE=∠EAB,
    ∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,
    ∴∠CFE=∠CEF,
    ∴CF=CE,
    ∴△CEF是等腰三角形;
    (2)∵点E恰好在线段AB的垂直平分线上,
    ∴AE=BE,
    ∴∠EAB=∠B,
    ∵AE是∠BAC的平分线,
    ∴∠CAE=∠EAB,
    ∴∠CAB=2∠B,
    ∵∠ACB=90°,
    ∴∠CAB+∠B=90°,
    ∴∠B=30°,
    ∴AC=AB.
    此题主要考查了等腰三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.
    25、(1)(2)2m-2n-1
    【解析】
    (1)解关于x、y的不等式组,得﹣3<m<1 .同理可以得出﹣5≤a≤. 由于原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.
    (2)由m、n的取值范围得出m+3>0,1﹣m>0,2n+8>0,从而化简得出最后结果.
    【详解】
    (1),
    ①+②得:2x=m+1,即x=<1;
    ①﹣②得:4y=1﹣m,即y=<1,
    解得:﹣3<m<1;
    由a+2≥1得a≥﹣5,
    2n-3a≥1得a≤.
    所以﹣5≤a≤.
    原不等式组恰好有三个整数解,则-3≤<-2,
    解得-4≤n<﹣.
    (2)∵﹣3<m<1,
    ∴m+3>0,1﹣m>0,2n+8>0
    原式=m+3﹣(1-m)-(2n+8)=2m-2n-1.
    本题是考查解不等式组、绝对值的化简、算术平方根的化简、相反数的综合性题目,是中考常出现的题型.理解关于a的方程组恰好有三个整数解是解决本题的关键.
    26、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    题号





    总分
    得分
    批阅人
    应试者





    82
    86
    78
    75

    73
    80
    85
    82

    81
    82
    80
    79
    相关试卷

    2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年天津市汉沽区名校九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年天津市汉沽区名校九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map