2024-2025学年四川省成都市青羊区部分学校九年级数学第一学期开学学业水平测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,一次函数与一次函数的图象交于点P(1,3),则关于x的不等式的解集是( )
A.x>2B.x>0C.x>1D.x<1
2、(4分)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于 ( )
A.1B.C.D.
3、(4分)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:
①小明从家出发5分钟时乘上公交车 ②公交车的速度为400米/分钟
③小明下公交车后跑向学校的速度为100米/分钟 ④小明上课没有迟到
其中正确的个数是( )
A.1个B.2个C.3个D.4个
4、(4分)如图,在直角三角形中,,,,点为的中点,点在上,且于,则=( )
A.B.C.D.
5、(4分)某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是( )
A.月通话时间低于200分钟选B方案划算
B.月通话时间超过300分钟且少于400分钟选A方案划算
C.月通话费用为70元时,A方案比B方案的通话时间长
D.月通话时间在400分钟内,B方案通话费用始终是50元
6、(4分)已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是( )
A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<2
7、(4分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么请你估计该厂这20万件产品中合格产品约有( )
A.1万件B.18万件C.19万件D.20万件
8、(4分)中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线过点和点,那么关于的方程的解是________.
10、(4分)如图所示,将直角三角形, ,,沿方向平移得直角三角形,,阴影部分面积为_____________.
11、(4分)如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为 .
12、(4分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=_____°.
13、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,若AC=8,BD=6,则该菱形的周长是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1);
(2);
15、(8分)何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
为什么要对2n2进行了拆项呢?
聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..
解决问题:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?
16、(8分)某商店的一种服装,每件成本为50元.经市场调研,售价为60元时,可销售800件;售价每提高5元,销售量将减少100件.求每件商品售价是多少元时,商店销售这批服装获利能达到12000元?
17、(10分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
(1)求G点坐标
(2)求直线EF解析式
(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
18、(10分)甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.
(1)租用一辆甲种客车、一辆乙种客车各多少元?
(2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)正五边形的内角和等于______度.
20、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______
21、(4分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.
22、(4分)已知某汽车油箱中的剩余油量(升)是该汽车行驶时间(小时)的一次函数,其关系如下表:
由此可知,汽车行驶了__________小时, 油箱中的剩余油量为升.
23、(4分)已知一组数据5,a,2,,6,8的中位数是4,则a的值是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,菱形ABCD的对角线AC、BD相交于点O,AB=10cm,OA=8cm.
(1)求菱形ABCD的面积;
(2)若把△OBC绕BC的中点E旋转180˚得到四边形OBFC,求证:四边形OBFC是矩形.
25、(10分)(1)化简;(m+2+)•
(2)先化简,再求值;(+x+2)÷,其中|x|=2
26、(12分)如图,四边形ABCD, AB//DC, ∠B=55,∠1=85,∠2=40
(1)求∠D的度数:
(2)求证:四边形ABCD是平行四边形
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
【分析】观察函数图象得到当x<1时,函数y=x+b的图象都在y=kx+4的图象下方,所以关于x的不等式x+b
【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
2、B
【解析】
根据轴对称图形的性质,解决问题即可.
【详解】
解:∵四边形ABCD是正方形,
∴直线AC是正方形ABCD的对称轴,
∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.
∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,
∴S阴=S正方形ABCD=,
故选B.
本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.
3、D
【解析】
解:①小明从家出发乘上公交车的时间为7-(1200-400)÷400=5分钟,①正确;
②公交车的速度为(3200-1200)÷(12-7)=400米/分钟,②正确;
③小明下公交车后跑向学校的速度为(3500-3200)÷3=100米/分钟,③正确;
④上公交车的时间为12-5=7分钟,跑步的时间为15-12=3分钟,因为3<4,小明上课没有迟到,④正确;
故选D.
4、C
【解析】
根据勾股定理先求出AB的长度,利用角关系得出等腰ACD及等腰BCD,得出CD=BD=AD= AB=
【详解】
如图
∵,,
∴
∵点为的中点,于
∴ED垂直平分AC
∴AD=CD
∴∠1=∠2
∵
∴∠1+∠4=∠2+∠3=90°
∴∠3=∠4
∴CD=BD
∴CD=BD=AD= AB=
故选:C
本题考查了勾股定理及等腰三角形的性质和判定,掌握由角关系推出线关系是解题的关键.
5、D
【解析】
根据通话时间少于200分钟时,A、B两方案的费用可判断选项A;根据300<x<400时,两函数图象可判断选项B;根据月通话费用为70元时,比较图象的横坐标大小即可判断选项C;根据x≤400,根据图象的纵坐标可判断选项D.
【详解】
根据图象可知,当月通话时间低于200分钟时,A方案通话费用始终是30元,B方案通话费用始终是50元,故选项A不合题意;
当300<x<400时,A方案通话费用大于70元,B方案通话费用始终是50元,故选项B不合题意;
当月通话费用为70元时,A方案通话费时间为300分钟,B方案通话费时间大于400分钟,故选项C不合题意;
当x≤400时,B方案通话费用始终是50元.故选项D符合题意.
故选D.
本题主要考查了一次函数的应用,根据题意弄清函数图象横纵坐标、函数图象的位置及交点坐标的实际意义是解题的关键.
6、D
【解析】
若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.
【详解】
解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,
∴k﹣2<1,k+1≥1
解得:﹣1≤k<2,
故选:D.
本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.
7、C
【解析】
抽取的100件进行质检,发现其中有5件不合格,那么合格的有95件,由此即可求出这类产品的合格率是95%,然后利用样本估计总体的思想,即可知道合格率是95%,即可求出该厂这20万件产品中合格品的件数.
【详解】
∵某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,
∴合格的有95件,
∴合格率为95÷100=95%,
∴估计该厂这20万件产品中合格品约为20×95%=19万件,
故选C.
此题主要考查了样本估计总体的思想,此题利用样本的合格率去估计总体的合格率.
8、C
【解析】
根据中心对称图形的概念进行分析.
【详解】
A、不是中心对称图形,故此选项错误;
B、不是中心对称图形,故此选项错误;
C、是中心对称图形,故此选项正确;
D、不是中心对称图形,故此选项错误;
故选:C.
考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
10、1
【解析】
根据平移的性质,对应点间的距离等于平移的距离求出CE=BF,再求出GE,然后根据平移变换只改变图形的位置不改变图形的形状与大小可得△ABC的面积等于△DEF的面积,从而得到阴影部分的面积等于梯形ACEG的面积,再利用梯形的面积公式列式计算即可得解.
【详解】
∵△ACB平移得到△DEF,
∴CE=BF=2,DE=AC=6,
∴GE=DE-DG=6-3=3,
由平移的性质,S△ABC=S△DEF,
∴阴影部分的面积=S梯形ACEG=(GE+AC)•CE=(3+6)×2=1.
故答案为:1.
本题考查了平移的性质,熟练掌握性质并求出阴影部分的面积等于梯形ACEG的面积是本题的难点,也是解题的关键.
11、x>﹣1.
【解析】
试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.
考点:一次函数与一元一次不等式
12、1
【解析】
由旋转的性质可知:▱ABCD全等于▱A1BC1D1,得出BC=BC1,由等腰三角形的性质得出∠BCC1=∠C1,由旋转角∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.
【详解】
∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,
∴BC=BC1,
∴∠BCC1=∠C1,
∵∠A=72°,
∴∠DCB=∠C1=72°,
∴∠BCC1=∠C1,
∴∠CBC1=180°﹣2×72°=1°,
∴∠ABA1=1°,
故答案为1.
本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.
13、20
【解析】
根据菱形的对角线互相垂直及勾股定理即可求解.
【详解】
依题意可知BD⊥AC,AO=4,BO=3
∴AB==5,
∴菱形的周长为4×5=20
此题主要考查菱形的周长计算,解题的关键是熟知菱形的对角线垂直.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
根据二次根式的运算法则,进行计算即可.
【详解】
(1)原式
(2)原式=
=
=
此题主要考查二次根式的运算,熟练掌握,即可解题.
15、(1) 1;(2)c为2,3,1.
【解析】
(1)已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出的值;
(2)由a2+b2=10a+12b-61,得a,b的值.进一步根据三角形一边边长大于另两边之差,小于它们之和,则b-a<c<a+b,即可得到答案.
【详解】
(1)∵x2﹣1xy+5y2+2y+1=0,
∴x2﹣1xy+1y2+y2+2y+1=0,
则(x﹣2y)2+(y+1)2=0,
解得x=﹣2,y=﹣1,
故;
(2)∵a2+b2=10a+12b﹣61,
∴(a﹣5)2+(b﹣6)2=0,
∴a=5,b=6,
∵1<c<11,且c为最短边,c为整数,
∴c为2,3,1.
此题主要考查了完全平方公式的变形应用,解题关键是如何对已知问题拆分变形,构造完全平方公式,然后直接判断求解即可.
16、70或80
【解析】
要求服装的单价,可设服装的单价为x元,则每件服装的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可;
【详解】
解:设单价应定为x元,根据题意得:
(x−50)[800−(x−60)÷5×100]=12000,
(x−50)[800−20x+1200]=12000,
整理得,x2−150x+5600=0,
解得=70,=80;
答:这种服装的单价应定为70元或80元.
本题主要考查了一元二次方程的应用,掌握一元二次方程的应用是解题的关键.
17、(1)G(0,4-);(2);(3).
【解析】
1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出 ,那么OG=OA-AG=4-,于是G(0,4-);
(2)先在Rt△AGF中,由 ,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BF tan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.
【详解】
解:(1)∵F(1,4),B(3,4),
∴AF=1,BF=2,
由折叠的性质得:GF=BF=2,
在Rt△AGF中,由勾股定理得,
∵B(3,4),
∴OA=4,
∴OG=4-,
∴G(0,4-);
(2)在Rt△AGF中,
∵ ,
∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,
在Rt△BFE中,
∵BE=BFtan60°=2,
.CE=4-2,
.E(3,4-2).
设直线EF的表达式为y=kx+b,
∵E(3,4-2),F(1,4),
∴ 解得
∴ ;
(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:
①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.
过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.
∵GN1∥EF,直线EF的解析式为
∴直线GN1的解析式为,
当y=0时, .
∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1( ,0),
∴M,( ,);
②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.
∵GFN2M2为平行四边形,
∴GN₂与FM2互相平分.
∴G(0,4-),N2点纵坐标为0
∴GN:中点的纵坐标为 ,
设GN₂中点的坐标为(x,).
∵GN2中点与FM2中点重合,
∴
∴x=
∵.GN2的中点的坐标为(),
.∴N2点的坐标为(,0).
∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),
∴M2();
③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.
∵GFN3M3为平行四边形,.
∴GN3与FM3互相平分.
∵G(0,4-),N2点横坐标为0,
.∴GN3中点的横坐标为0,
∴F与M3的横坐标互为相反数,
∴M3的横坐标为-1,
当x=-1时,y=,
∴M3(-1,4+2);
④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.
过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4
∵G(0,4-),F(1,4),
∴FG中点坐标为(),
∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,
.∴M4的纵坐标为8-.
5-45解方程 ,得
∴M4().
综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为: 。
本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.
18、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)当租用甲种客车2辆时,总租车费最少,最少费用为1元.
【解析】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,则
5x+2(x+100)=2300,解方程即可;
(2)由题意y=300x+400(7﹣x)=﹣100x+2800,又30x+45(7﹣x)≥275,求出x的最大值即可.
【详解】
(1)设租用一辆甲种客车的费用为x元,
则一辆乙种客车的费用为(x+100)元,则
5x+2(x+100)=2300,
解得x=300,
答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
(2)由题意y=300x+400(7﹣x)=﹣100x+2800,
又30x+45(7﹣x)≥275,解得x≤,
∴x的最大值为2,
∵﹣100<0,∴x=2时,y的值最小,最小值为1.
答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
本题考核知识点:一次函数的应用. 解题关键点:把问题转化为解一元一次方程或不等式问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、540
【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
∴正五边形的内角和=3180=540°
20、-3
【解析】
分析:根据常数项为0,且二次项系数不为0列式求解即可.
详解:由题意得,
,
解之得,
m=-3.
故答案为:-3.
点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.
21、六
【解析】
n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.
【详解】
设多边形的边数为n,依题意,得:
(n﹣2)•180°=2×360°,
解得n=6,
故答案为:六.
本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.
22、11.5
【解析】
根据剩余油量(升)、汽车行驶时间(小时),可求出每千米用油量,根据题意可写出函数式.
【详解】
根据题意得每小时的用油量为,
∴剩余油量(升)与汽车行驶时间(小时)的函数关系式:,
当y=8时,x=11.5.
故答案为:11.5.
此题考查一次函数,解题关键在于结合实际列出一次函数关系式求解即可.
23、1
【解析】
先确定从小到大排列后a的位置,再根据中位数的定义解答即可.
【详解】
解:根据题意,a的位置按照从小到大的排列只能是:﹣1,2,a,5,6,8;
根据中位数是4,得:,解得:a=1.
故答案为:1.
本题考查的是中位数的定义,属于基本题型,熟知中位数的概念是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)96cm2;(2)证明见解析.
【解析】
(1)利用勾股定理,求出OB,继而求出菱形的面积,即可.
(2)求出四边形OBFC的各个角的大小,利用矩形的判定定理,即可证明.
【详解】
解:(1)∵四边形ABCD是菱形
∴AC⊥BD .
在直角三角形AOB中,AB=10cm,OA=8cm
OB===6cm.
∴AC=2OA=2×8=16cm ;BD=2OB=2×6=12cm
∴菱形ABCD的面积=×AC×BD=×16×12=96cm2 .
(2)∵四边形ABCD是菱形
∴AC⊥BD
∴∠BOC=
∴在Rt△BOC中,∠OBC+∠OCB= .
又∵把△OBC绕BC的中点E旋转得到四边形OBFC
∴∠F=∠BOC=,∠OBC=∠BCF
∴∠BCF+∠OCB=,即∠OCF=.
∴四边形OBFC是矩形(有三个角是直角的四边形是矩形).
本题主要考查了菱形及矩形的性质,正确掌握菱形及矩形的性质是解题的关键.
25、(1)m+1;(2)1
【解析】
(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
【详解】
解:(1)原式==m+1;
(2)原式= ,
由|x|=2,得到x=2或﹣2(舍去),
当x=2时,原式=1.
此题考查分式的化简求值,解题关键在于掌握运算法则.
26、(1)55º;(2)见解析.
【解析】
【分析】(1)根据三角形内角和为180°,可得结果;(2)根据平行线性质求出∠ACB
=85°,由∠ACB=∠1=85°得AD∥BC.两组对边平行的四边形是平行四边形.
【详解】(1)解∵∠D+∠2+∠1=180°,
∴∠D=180°-∠2-∠1
=180°-40°-85°=55°.
(2)证明:∵AB∥DC,
∴∠2+∠ACB+∠B=180°.
∴∠ACB=180°-∠B-∠2
=180°-55°-40°=85°.
∵∠ACB=∠1=85°,
∴AD∥BC.
又∵AB∥DC
∴四边形ABCD是平行四边形.
【点睛】此题考核知识点:三角形内角和性质;平行线性质;平行四边形判定.解题关键:根据所求,算出必要的角的度数,由角的特殊关系判定边的位置关系.此题比较直观,属基础题.
题号
一
二
三
四
五
总分
得分
批阅人
(小时)
…
(升)
…
2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南通市部分学校数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年江苏省南通市部分学校数学九年级第一学期开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年河南省新乡市清华园学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年河南省新乡市清华园学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限,则k能取的最大整数为,解答题等内容,欢迎下载使用。