2024-2025学年四川省成都市第十一中学高一新生入学分班质量检测数学试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数y=kx+b(k≠0)图象经过第二、三、四象限,则一次函数y=﹣bx+kb图象可能是( )
A.B.C.D.
2、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是( )
A.中位数为1B.方差为26C.众数为2D.平均数为0
3、(4分)如图,在直角坐标系中,有两点和,则这两点之间的距离是( )
A.B.13C.D.5
4、(4分)下列二次根式中,最简二次根式的是( )
A.B.C.D.
5、(4分)二次根式、、、、、中,最简二次根式有( )个.
A.1 个B.2 个C.3 个D.4个
6、(4分)直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是( )
A.10B.8C.6D.5
7、(4分)如图是可以自由转动的转盘,转盘被等分成三个扇形,并分别标上1,2,3,转盘停止后,则指针指向的数字为偶数的概率是( )
A.B.C.D.
8、(4分)如果把分式中x、y的值都扩大为原来的2倍,则分式的值( )
A.扩大为原来的4 倍B.扩大为原来的2倍
C.不变D.缩小为原来的
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.
10、(4分)在比例尺为1:5000的地图上,量得甲,乙两地的距离为30cm,则甲,乙两地的实际距离是__________千米.
11、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.
12、(4分)当1≤x≤5时,
13、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
则这10名学生周末利用网络进行学习的平均时间是________小时.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,对角线AC,相交于点O,cm,cm,E,F分别是AB,BC的中点,点P是对角线AC上的一个动点,设cm,cm,cm
小明根据学习函数的经验,分别对这两种函数随自变量的变化而变化的情况进行了探究,下面是小明探究过程,请补充完整:
(1)画函数的图象
①按下表自变量的值进行取点、画图、测量,得到了与x的几组对应值:
②在所给坐标系中描出补全后的表中的各对应值为坐标的点,画出函数的图象;
(2)画函数的图象
在同一坐标系中,画出函数的图象;
(3)根据画出的函数的图象、函数的图象,解决问题
①函数的最小值是________________;
②函数的图象与函数的图象的交点表示的含义是________________;
③若,AP的长约为________________cm
15、(8分)一个容器盛满纯药液,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是,则每次倒出的液体是多少?
16、(8分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置关系是
(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
17、(10分)如图,已知反比例函数的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
18、(10分)计算:(1)
(2)已知,试求以a、b、c为三边的三角形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于__.
20、(4分)关于t的分式方程=1的解为负数,则m的取值范围是______.
21、(4分)化简: 的结果是_____.
22、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.
23、(4分)将直线y=-2x+4向左平移2个单位,得到直线的函数解析式为___________
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两个工程队合作完成一项工程,两队合做2天后由乙队单独做1天就完成了全部工程,已知乙队单独做所需的天数是甲队单独做所需天数的1.5倍,求甲、乙两队单独做各需多少天完成该项工程?
25、(10分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.
(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?
(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?
26、(12分)某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.
(1)求去年购买的文学书和科普书的单价各是多少元;
(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
首先根据一次函数的性质确定k,b的符号,再确定一次函数y=﹣bx+kb系数的符号,判断出函数图象所经过的象限.
【详解】
∵一次函数y=kx+b经过第二,三,四象限,
∴k<0,b<0,
∴−b>0,kb>0,
所以一次函数y=−bx+kb的图象经过一、二、三象限,
故选:A.
本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
2、B
【解析】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
B. , ,故不正确;
C.∵众数是2,故正确;
D.,故正确;
故选B.
3、A
【解析】
在直角三角形中根据勾股定理即可求解.
【详解】
解:根据勾股定理得,这两点之间的距离为.
故选:A
本题考查了平面直角坐标系中两点间的距离,对于不在同一直线上的两点,可通过构造直角三角形由勾股定理求距离.
4、C
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、=,被开方数含分母,不是最简二次根式;故A选项错误;
B、=,被开方数为小数,不是最简二次根式;故B选项错误;
C、,是最简二次根式;故C选项正确;
D.=,被开方数,含能开得尽方的因数或因式,故D选项错误;
故选C.
考点:最简二次根式.
5、C
【解析】
直接利用最简二次根式的定义判断得出结论即可.
【详解】
在二次根式、、、、、中,最简二次根式有: 、、,共3个
故选:C
本题考查了最简二次根式的定义,在判断最简二次根式的过程中要注意:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
6、D
【解析】
如图,根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.
【详解】
解:如图,
∵∠ACB=90°,AC=6,BC=8,由勾股定理得:
AB==10,
∵CD是△ABC中线,
∴CD=AB=×10=5,
故选D.
本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.
7、D
【解析】
转盘转动共有三种结果,转盘停止后指向偶数的情况一种,所以概率公式求解即可.
【详解】
因为一共三种结果,转盘停止后指向偶数的情况一种,所以P(指向偶数)=
故答案为D.
本题考查的是概率公式的应用.
8、B
【解析】
根据x,y都扩大2倍,即可得出分子扩大4倍,分母扩大2倍,由此即可得出结论.
【详解】
解:∵分式中的x与y都扩大为原来的2倍,
∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,
∴分式的值扩大为原来的2倍.
故选:B.
此题考查分式的性质,解题关键在于掌握其性质
二、填空题(本大题共5个小题,每小题4分,共20分)
9、135
【解析】
试题分析:如图,连接EE′,
∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,
∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.
∴EE′=3,∠BE′E=45°.
∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.
∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.
10、1.1
【解析】
设相距30cm的两地实际距离为xcm,根据题意可得方程l:1000=30:x,解此方程即可求得答案,注意统一单位.
【详解】
解:设相距30cm的两地实际距离为xcm,
根据题意得:l:1000=30:x,
解得:x=110000,
∵110000cm=1.1km,
∴甲,乙两地的实际距离是1.1千米.
故答案为:1.1.
此题考查了比例尺的性质.此题比较简单,解题的关键是注意理解题意,根据题意列方程,注意统一单位.
11、()n-1
【解析】
试题分析:已知第一个矩形的面积为1;
第二个矩形的面积为原来的()2-1=;
第三个矩形的面积是()3-1=;
…
故第n个矩形的面积为:.
考点:1.矩形的性质;2.菱形的性质.
12、1.
【解析】
试题分析:根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.
试题解析:∵1≤x≤5,
∴x-1≥2,x-5≤2.
故原式=(x-1)-(x-5)=x-1-x+5=1.
考点: 二次根式的性质与化简.
13、2.1
【解析】
依据加权平均数的概念求解可得.
【详解】
解:这10名学生周末利用网络进行学习的平均时间是:
;
故答案为:2.1.
本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)①见解析;②见解析;(2)见解析;(3)①y1的最小值是0.5;②AP的长为2cm;③x=2.1.
【解析】
(1)①由表格得点(x,y1)即可;
②先由①描点,再用光滑曲线顺次连接各点,即可得出函数图象;利用数形结合,根据当x=0.5时,得出y1值,填入表格即可;
(2)过点F作FM⊥AC于M,由菱形的性质各三角形中位线性质求得FM=1,PM=3-x,所以y2=,再利用描点法画出y2的图象即可;
(3)①利用数形结合,由函数y1的图象求解即可;
②过点F作FM⊥AC于M,
可利用几何背景意义求解;
③因PC=AC-AP=4-x,由PE=PC,则y1=4-x,利用图象求解即可.
【详解】
解:(1)①如下表:图象如图所示:
②过点F作FM⊥AC于M,如图,
∵菱形ABCD,
∴AC⊥BD,
∴FM∥BD,
∵F是BC的中点,
∴M是OC的中点,
∴FM=1,OM=1,
∴PM=3-x,
∴PF2=PM2+MF2,
∴y2=,
利用描点法作出图象,如图所示:
(3)如上图;
①由图象可得:函数y1的最小值是0.5;
②答案不唯一,如,如:用几何背景意义可知:函数y1的图象与函数y2的图象的交点表示的含义是:当PE=PF=1.12cm时,由图象可得:AP的长为2cm;
③∵PC=AC-AP=4-x,
∵PE=PC,
∴y1=4-x,
利用图象可得:x=2.1.
故答案为①0.5;②当PE=PF=1.12cm时,AP的长为2cm;③2.1.
本题考查动点函数的函数图象,菱形的性质,以及勾股定理的应用.熟练掌握用描点法作函数图象是解题关键.
15、21
【解析】
设每次倒出药液为x升,第一次倒出后剩下的纯药液为63(1-),第二次加满水再倒出x升溶液,剩下的纯药液为63(1-)(1-)又知道剩下的纯药液为28升,列方程即可求出x.
【详解】
设每次倒出液体x升,
63(1-)2=28 ,
x1=105(舍),x2=21.
答:每次倒出液体21升.
本题考查了一元二次方程的应用,根据题目给出的条件,找出合适的等量关系是解题的关键.
16、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
【解析】
(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
(2)根据四条边都相等的四边形是菱形证明;
(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
【详解】
(1)由图可知,AB=AD,CB=CD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∵AB=AD,
∴点A在BD的垂直平分线上,
∵CB=CD,
∴点C在BD的垂直平分线上,
∴AC垂直平分BD,
∴AC⊥BD;
(2)四边形ABCD是菱形.
理由如下:由(1)可得AB=AD,CB=CD,
∵AB=BC,
∴AB=BC=CD=DA,
∴四边形ABCD是菱形;
(3)设点B到AD的距离为h,
在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
在Rt△ADO中,AD==5,
S菱形ABCD=AC•BD=AD•h,
即×8×6=5h,
解得h=,
设拼成的正方形的边长为a,则a2=×8×6,
解得a=2cm.
所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
17、(1);(2)m>n.
【解析】
(1)根据待定系数法即可求得;
(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据1<3<0,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.
【详解】
解:(1)因为反比例函数y=的图象经过点A(-3,-2),
把x=-3,y=-2代入解析式可得:k=6,
所以解析式为:y=;
(2)∵k=6>0,
∴图象在一、三象限,造,在每个向西安内,y随x的增大而减小,
又∵0<1<3,
∴B(1,m)、C(3,n)两个点在第一象限,
∴m>n.
本题考查待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.
18、(1);(2)以a、b、c为三边的三角形的面积为1.
【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;
(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.
【详解】
解:(1)原式;
(2)由题意得:,
,,,
,,,
,,
∴以a、b、c为三边的三角形是直角三角形.
∴它的面积是.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
一次函数图象与两坐标轴围成的面积,就要先求出一次函数图象与两坐标轴的交点,再由直角三角形面积公式求三角形面积,结合图象经过第一、三、四象限,判断k的取值范围,进而求出k的值.
【详解】
解:∵一次函数y=kx﹣2与两坐标轴的交点分别为,,
∴与两坐标轴围成的三角形的面积S=,
∴k=,
∵一次函数y=kx﹣2的图象经过第一、三、四象限,
∴k>0,
∴k=,
故答案为:.
本题考查了一次函数图象的特征、一次函数与坐标轴交点坐标的求法、三角形面积公式.利用三角形面积公式列出方程并求解是解题的关键.
20、m<1
【解析】
分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.
【详解】
去分母得:m-5=t-2,
解得:t=m-1,
由分式方程的解为负数,得到m-1<0,且m-1≠2,
解得:m<1,
故答案为:m<1.
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
21、
【解析】
原式= ,故答案为.
22、2
【解析】
先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.
【详解】
解:解方程得第三边的边长为2或1.
第三边的边长,
第三边的边长为1,
这个三角形的周长是.
故答案为2.
本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.
23、
【解析】
根据图象平移的规律,左加右减,上加下减,即可得到答案.
【详解】
解:由题意得,
y=-2x+4=-2(x+2)+4,
即y=-2x,
故答案为:y=-2x.
本题主要考查了一次函数图象与几何变换,掌握一次函数图象是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、甲队单独歐需4天完成该项工程,乙队单独做需6天完成该项工程
【解析】
设甲队单独做需x天完成该项工程,则乙队单独做需1.5x天完成该项工程,根据乙一天的工作量+甲乙合作2天的工作量=1列出方程解答即可.
【详解】
解:设甲队单独做需天完成该项工程,则乙队单独做需天完成该项工程,
由题意得
解得:
经检验是原分式方程的解
答:甲队单独歐需4天完成该项工程,乙队单独做需6天完成该项工程
此题考查分式方程的应用,解题关键在于列出方程.
25、(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.
【解析】
(1)首先设网上每张电影票价格为元,现场每张电影票价格为元,然后根据题意,列出关系式,即可得解;
(2)首先设现场购票每张电影票的价格下降元,然后根据题意列出关系式,即可得解.
【详解】
(1)设网上每张电影票价格为元,现场每张电影票价格为元.
解得:
答:网上购票价格30元,现场购票价格50元.
(2)设现场购票每张电影票的价格下降元
解得(舍去),
答:5月5日当天现场购票每张电影票的价格为40元.
此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.
26、(1)文学书的单价是1元,科普书的单价是2元;(2) 至少要购买52本科普书.
【解析】
(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用200元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;
(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.
【详解】
解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,
根据题意,得.
解得x=1.
经检验 x=1是原方程的解.
当x=1时,x+8=2.
答:去年购买的文学书的单价是1元,科普书的单价是2元;
(2)设这所学校今年要购买y本科普书,
根据题意,得1×(1+20%)(200﹣y﹣y)+2y≤2088
解得y≥52
答:这所学校今年至少要购买52本科普书.
本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.
题号
一
二
三
四
五
总分
得分
时间(单位:小时)
4
3
2
l
0
人数
3
4
1
1
1
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
/cm
1.12
0.5
0.71
1.12
1.58
2.06
2.55
3.04
x/cm
0
0.5
1
1.5
2
2.5
3
3.5
4
y1/cm
1.12
0.71
0.5
0.71
1.12
1.58
2.06
2.55
3.04
2024-2025学年四川省成都市金堂竹篙中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂竹篙中学高一新生入学分班质量检测数学试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂实验中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市金堂高板中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。