2024-2025学年四川成都第八中学高一上学期入学摸底经典模拟数学试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是
A.B.C.D.
2、(4分)已知一组数据为8,9,10,10,11,则这组数据的众数( )
A.8B.9C.10D.11
3、(4分)若的两根分别是与5,则多项式可以分解为( )
A.B.
C.D.
4、(4分)在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为( ).
A.B.C.D.无法确定
5、(4分)下列一元二次方程中,没有实数根的是( )
A.x2=2xB.2x2+3=0C.x2+4x-1=0D.x2-8x+16=0
6、(4分)某旅游纪念品商店计划制作一种手工编织的工艺品600件,制作120个以后,临近旅游旺季,商店老板决定加快制作进度,后来每天比原计划多制作20个,最后共用时11天完成,求原计划每天制作该工艺品多少个?设原计划每天制作该工艺品个,根据题意可列方程( )
A.B.
C.D.
7、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等
8、(4分)化简的结果是()
A.-2B.2C.D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________
10、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
11、(4分)如图,为的中位线,点在上,且为直角,若 ,,则的长为_____.
12、(4分)4是_____的算术平方根.
13、(4分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在线段BC上一动点,以AC为对角线的平行四边形ADCE中,则DE的最小值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
(1)求这个反比函数的表达式;
(2)求△ACD的面积.
15、(8分)列方程解应用题
某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?
16、(8分)如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
17、(10分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
结合以上信息,回答下列问题:
(1)求服装项目在选手考评中的权数;
(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.
18、(10分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.
(1)如果b=﹣2,求k的值;
(2)试探究k与b的数量关系,并写出直线OD的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为.
20、(4分)正十边形的外角和为__________.
21、(4分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.
22、(4分)已知点(-4,y1),(2,y2)都在直线y=ax+2(a<0)上,则y1, y2的大小关系为_________ .
23、(4分)化简: .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3),B(﹣3,1),C(﹣1,3).
(1)请按下列要求画图:
①平移△ABC,使点A的对应点A1的坐标为(﹣4,﹣3),请画出平移后的△A1B1C1;
②△A1B1C1与△ABC关于原点O中心对称,画出△A1B1C1.
(1)若将△A1B1C1绕点M旋转可得到△A1B1C1,请直接写出旋转中心M点的坐标 .
25、(10分)如图,是平行四边形的对角线,,分别交于点.
求证:.
26、(12分)计算
(1) (2)分解因式
(3)解方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断即可.
【详解】
注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选D.
本题考查了函数的图象,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.
2、C
【解析】
一组数据中出现次数最多的数据叫作这组数据的众数,据此解答即可得到答案.
【详解】
解:这组数据中8、9、11各出现一次,10出现两次,因此这组数据的众数是10.
故选C.
本题主要考查了众数的含义.
3、C
【解析】
先提取公因式2,再根据已知分解即可.
【详解】
∵x2-2px+3q=0的两根分别是-3与5,
∴2x2-4px+6q=2(x2-2px+3p)
=2(x+3)(x-5),
故选:C.
考查了解一元二次方程和分解因式,注意:能够根据方程的解分解因式是解此题的关键.
4、C
【解析】
求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围.
【详解】
解:能使函数的图象在函数的上边时的自变量的取值范围是.
故关于的不等式的解集为:.
故选:.
本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
5、B
【解析】
根据根的判别式可以判断各个选项中的方程是否有实数根,从而可以解答本题.
【详解】
解:A、△=(-2)2-4×1×0=4>0,此方程有两不相等实数根;
B、△=0-4×2×3=-24<0,此方程没有实数根;
C、△=16-4×1×(-1)=20>0,此方程有两不相等实数根;
D、原方程配方得(x-4)2=0,此方程有两相等的根.
故选:B.
本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
6、C
【解析】
根据题意,可以列出相应的分式方程,本题得以解决.
【详解】
解:由题意可得,,
故选:C.
本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.
7、B
【解析】
根据正方形的性质以及菱形的性质逐项进行分析即可得答案.
【详解】
菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;
正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),
A.菱形和正方形的对角线都互相垂直,故本选项错误;
B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;
C.菱形和正方形的对角线互相平分,故本选项错误;
D.菱形和正方形的对角都相等,故本选项错误,
故选B.
本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.
8、B
【解析】
先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.
【详解】
==2,
故选:B.
本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据∆>0列式求解即可.
【详解】
由题意得
4-8m>0,
∴.
故答案为:.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
10、
【解析】
根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
【详解】
解:根据题意,点,
∵直线与(包括边界)相交,
∴点B到直线的距离了最短,点C到直线的距离最长,
当直线经过点B时,有
,
∴;
当直线经过点C时,有
,
∴;
∴的取值范围是:.
本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
11、1cm.
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE﹣FE=1(cm),
故答案为1cm.
本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、16.
【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
13、1
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=1.
故答案为:1.
本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.
三、解答题(本大题共5个小题,共48分)
14、(1 );(2)6.
【解析】
试题分析:(1)将B点坐标代入y=中,求得k值,即可得反比例函数的解析式;(2)分别求得点C、点A、点D的坐标,即可求得△ACD的面积.
试题解析:
(1)将B点坐标代入y=中,得=2,解得k=6,
∴反比例函数的解析式为y=.
(2)∵点B与点C关于原点O对称,
∴C点坐标为(-3,-2).
∵BA⊥x轴,CD⊥x轴,
∴A点坐标为(3,0),D点坐标为(-3,0).
∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6
15、原计划每天加工20套.
【解析】
设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.
【详解】
解:设原计划每天加工x套,由题意得:
解得:x=20,
经检验:x=20是原方程的解.
答:原计划每天加工20套.
考点:分式方程的应用
16、(1);(2)证明见解析.
【解析】
试题分析:(1)由在△ABC中,AB=AC,∠ABC=α,可求得∠BAC=180°-2α,又由AE=AD,∠DAE+∠BAC=180°,可求得∠DAE=2α,继而求得∠ADE的度数;
(2)①由四边形ABFE是平行四边形,易得∠EDC=∠ABC=α,则可得∠ADC=∠ADE+∠EDC=90°,证得AD⊥BC,又由AB=AC,根据三线合一的性质,即可证得结论;
②由在△ABC中,AB=AC,∠ABC=α,可得∠B=∠C=α,四边形ABFE是平行四边形,可得AE∥BF,AE=BF.即可证得:∠EAC=∠C=α,又由(1)可证得AD=CD,又由AD=AE=BF,证得结论.
试题解析:(1)∠ADE =.
(2)①证明:∵四边形ABFE是平行四边形,
∴AB∥EF.
∴.
由(1)知,∠ADE =,
∴.
∴AD⊥BC.
∵AB=AC,
∴BD=CD.
②证明:
∵AB=AC,∠ABC =,
∴.
∵四边形ABFE是平行四边形,
∴AE∥BF,AE=BF.
∴.
由(1)知,,
∴.
∴.
∴AD=CD.
∵AD=AE=BF,
∴BF=CD.
∴BD=CF.
考点:1.平行四边形的判定与性质;2.等腰三角形的性质.
17、 (1)10%;(2)见解析.
【解析】
(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,
(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.
【详解】
解:(1)服装权数是
(2)选择李明参加比赛
理由如下:
李明的总成绩
张华的总成绩
选择李明参加比赛.
考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.
18、解:(1)当b=﹣2时,直线y=2x﹣2与坐标轴交点的坐标为A(1,0),B(0,﹣2),
∵△AOB≌△ACD,∴CD=DB=2,AO=AC=1。∴点D的坐标为(2,2)。
∵点D在双曲线( x>0)的图象上,∴k=2×2=4。
(2)直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),
∵△AOB≌△ACD,∴CD=OB= b,AO=AC=,
∴点D的坐标为(﹣b,﹣b)。
∵点D在双曲线( x>0)的图象上,
∴,即k与b的数量关系为:。
直线OD的解析式为:y=x。
【解析】
试题分析:(1)首先求出直线y=2x﹣2与坐标轴交点的坐标,然后由△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,由点D在双曲线( x>0)的图象上求出k的值。
(2)首先直线y=2x+b与坐标轴交点的坐标为A(,0),B(0,b),再根据△AOB≌△ACD得到CD=DB,AO=AC,即可求出D坐标,把D点坐标代入反比例函数解析式求出k和b之间的关系,进而也可以求出直线OD的解析式。
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m>1
【解析】
试题分析:根据y=kx+b的图象经过x轴的正半轴则b>0即可求得m的取值范围.
解:∵直线y=﹣2x+m﹣1的图象经过x轴的正半轴,
∴m﹣1>0,
解得:m>1,
故答案为:m>1.
20、360°
【解析】
根据多边形的外角和是360°即可求出答案.
【详解】
∵任意多边形的外角和都是360°,
∴正十边形的外交和是360°,
故答案为:360°.
此题考查多边形的外角和定理,熟记定理是解题的关键.
21、1.
【解析】
根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.
【详解】
由翻转变换的性质可知,BF=DF,
则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,
故答案为:1.
本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
22、y1>y2
【解析】
∵k=a<0,
∴y随x的增大而减小.
∵−4<2,∴y1>y2.
故答案为y1>y2.
23、2
【解析】
试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.
二、解答题(本大题共3个小题,共30分)
24、(1)①见解析②见解析(1)(0,﹣3)
【解析】
(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;
②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可;
(1)连接B1B1,C1C1,交点就是旋转中心M.
【详解】
(1)①如图所示,△A1B1C1即为所求;
②如图所示,△A1B1C1即为所求;
(1)如图,连接C1C1,B1B1,交于点M,则△A1B1C1绕点M旋转180°可得到△A1B1C1,
∴旋转中心M点的坐标为(0,﹣3),
故答案为(0,﹣3).
本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
25、详见解析
【解析】
根据平行四边形的性质,证明全等即可证明结论.
【详解】
证明:四边形是平行四边形,
,.
.
.
.
.
.
本题主要考查平行四边形的性质定理,关键在于寻找全等的三角形.
26、① ;②;③无解
【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;
(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)
由①得x≥-1,
由②得x<1,
原不等式的解为-1≤x<1.
(1)原式=(a1+4)1-(4a)1,
=(a1+4+4a)(a1+4-4a),
=(a+1)1(a-1)1.
(3)去分母得:1-1x=1x-4-3,
移项合并得:4x=8,
解得:x=1,
经检验x=1是增根,分式方程无解.
(1)本题考查的是解一元一此不等式组,解答此题的关键是熟知解一元一此不等式组应遵循的法则,同大取较大,同小取较小,小大大小中间找,大大小小解不了.
(1)此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a1-b1=(a+b)(a-b),完全平方公式:a1±1ab+b1=(a±b)1.
(3)此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
题号
一
二
三
四
五
总分
得分
2024-2025学年四川省成都市第二十中学高一新生入学摸底数学学科经典习题训练【含解析】: 这是一份2024-2025学年四川省成都市第二十中学高一新生入学摸底数学学科经典习题训练【含解析】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川成都田家炳中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都田家炳中学高一新生入学分班质量检测数学试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。