2024-2025学年四川成都第十七中学高一新生入学分班质量检测数学试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列汽车标志中,是中心对称图形的是( )
A.B.C.D.
2、(4分)函数的图象是双曲线,则m的值是( )
A.-1B.0C.1D.2
3、(4分)直线过点,,则的值是( )
A.B.C.D.
4、(4分)若直线y=ax+b的图象经过点(1,5),则关于的方程的解为( )
A.B.C.D.
5、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.B.
C.D.
6、(4分)如表是某公司员工月收入的资料.
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差
7、(4分)在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为( ).
A.B.C.D.无法确定
8、(4分)若x<y,则下列结论不一定成立的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值_____.
10、(4分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是_________________.
11、(4分)若不等式组恰有两个整数解,则m的取值范围是__________.
12、(4分)不等式组的解集是_____.
13、(4分)既是矩形又是菱形四边形是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:
(1)本次随机抽样的学生数是多少?A中值是多少?
(2)本次调查获取的样本数据的众数和中位数各是多少?
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?
15、(8分)如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从A.C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0
(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由
16、(8分)如图,在“飞镖形”中,、、、分别是、、、的中点.
(1)求证:四边形是平行四边形;
(2)若,那么四边形是什么四边形?
17、(10分)解分式方程:.
18、(10分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
20、(4分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为___.
21、(4分)如图,字母A所代表的正方形面积为____.
22、(4分)如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边形DEOF,其中正确结论的序号是_____.
23、(4分)如图,在正方形ABCD中,E是边CD上的点.若△ABE的面积为4.5,DE=1,则BE的长为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点时,求证:BE=EF.
(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.
25、(10分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
(1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;
(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
26、(12分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:
(1)请根据统计图填写下表:
(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?
①从平均数和方差相结合分析;
②从折线图上两名同学分数的走势上分析.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据中心对称图形的概念即可解答.
【详解】
选项A,旋转180°,与原图形不能够完全重合,不是中心对称图形;
选项B,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
选项C,旋转180°,不能与原图形能够完全重合,不是中心对称图形;
选项D,旋转180°,能与原图形能够完全重合,是中心对称图形;
故选D.
本题考查了中心对称图形的概念,熟练运用中心对称图形的概念(在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形)是解决问题的关键.
2、C
【解析】
根据反比例函数的定义列出关于m的不等式组,求出m的值即可.
【详解】
解:∵函数的图象是双曲线,
∴,解得m=1.
故选:C.
本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.
3、B
【解析】
分别将点,代入即可计算解答.
【详解】
解:分别将点,代入,
得:,解得,
故答案为:B.
本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.
4、C
【解析】
将点(1,5)代入函数解析式,即可得出答案.
【详解】
∵ 直线y=ax+b经过点(1,5),
∴有5=a+b
从而有方程ax+b=5的解为x=1
故选C.
本题考查的是一次函数,比较简单,需要熟练掌握一次函数与一元一次方程的关系并灵活运用.
5、D
【解析】
根据把整式变成几个整式的积的过程叫因式分解进行分析即可.
【详解】
A、是整式的乘法运算,不是因式分解,故A不正确;
B、是积的乘方,不是因式分解,故B不正确;
C、右边不是整式乘积的形式,故C不正确;
D、是按照平方差公式分解的,符合题意,故D正确;
故选:D.
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.
6、C
【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.
【详解】
该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为3400元;
由于在25名员工中在此数据及以上的有13人,
所以中位数也能够反映该公司全体员工月收入水平;
故选C.
此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.
7、C
【解析】
求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围.
【详解】
解:能使函数的图象在函数的上边时的自变量的取值范围是.
故关于的不等式的解集为:.
故选:.
本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
8、C
【解析】
根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.
【详解】
解:A,不等式两边同时减3,不等式的方向不变,选项A正确;
B,不等式两边同时乘-5,不等式的方向改变,选项B正确;
C,x<y,没有说明x,y的正负,所以不一定成立,选项C错误;
D,不等式两边同时乘,不等式的方向改变,选项D正确;
故选:C.
本题主要考查了不等式的性质,即不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变;理解不等式的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据a+b=3,ab=2,应用提取公因式法,以及完全平方公式,求出代数式a3b+2a2b2+ab3的值是多少即可.
【详解】
∵a+b=3,ab=2,
∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=2×32=1
故答案为:1.
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
10、
【解析】
根据函数图象与x轴的交点坐标,当y<0即图象在x轴下侧,求出即可.
【详解】
当y<0时,图象在x轴下方,
∵与x交于(1,0),
∴y<0时,自变量x的取值范围是x<1,
故答案为:x<1.
本题考查了一次函数与一元一次不等式,解题的关键是运用观察法求自变量取值范围通常是从交点观察两边得解.
11、-1≤m<0
【解析】
分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.
详解:∵不等式组的解集为
又∵不等式组恰有两个整数解,
∴
解得:.
恰有两个整数解,
故答案为:
点睛:考查一元一次不等式的整数解,解题的关键是写出不等式组的解集.
12、x≤1
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
解不等式①得:x≤1,
解不等式②得:x<7,
∴不等式组的解集是x≤1,
故答案为:x≤1.
本题考查了解一元一次不等式组,能根据不等式的解集求出不等式组的解集是解此题的关键.
13、正方形
【解析】
根据正方形的判定定理即可得到结论.
【详解】
既是矩形又是菱形的四边形是正方形,
故答案为正方形.
本题考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)40;15(2)众数为35,中位数为36;(3)60双
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图A中m的值为100−30−25−20−10=15;
故本次随机抽样的学生数是40名,A中值是15;
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,
∴中位数为=36;
答:本次调查获取的样本数据的众数为35,中位数为36;
(3)∵在40名学生中,鞋号为35的学生人数比例为30%,
∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,
则计划购买200双运动鞋,有200×30%=60双为35号.
答:建议购买35号运动鞋60双.
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
15、(1)见解析;(2);(3)不存在,理由见解析.
【解析】
(1)由矩形的性质得出CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,由SAS证明△APE≌△CQF,得出PE=QF,同理:PF=QE,即可得出结论;
(2)根据题意得:AP=CQ=t,∴PD=QB=8-t,作EF∥BC交CD于E,交PQ于H,证出EH是梯形ABQP的中位线,由梯形中位线定理得出EH= (AP+BQ)=4,证出GH:GQ=3:2,由平行线得出△EGH∽△CGQ,得出对应边成比例 ,即可得出t的值;
(3)由勾股定理求出CE= =10,作EM∥BC交PQ于M,由(2)得:ME=4,证出△GCQ∽△BCE,得出对应边成比例求出CG=t,得出EG=10- t,由平行线证明△GME∽△GQC,得出对应边成比例,求出t=0或t=8.5,即可得出结论.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴CD=AB=12,AD=BC=8,∠A=∠B=∠C=∠D=90°,
∵E、F分别为AB、CD的中点,
∴AE=BE=6,DF=CF=6,
∴AE=BE=DF=CF,
∵点P、Q从A. C同时出发,在边AD、CB上以每秒1个单位向D、B运动,
∴AP=CQ=t,
在△APE和△CQF中, ,
∴△APE≌△CQF(SAS),
∴PE=QF,
同理:PF=QE,
∴四边形PEQF总为平行四边形;
(2)根据题意得:AP=CQ=t,
∴PD=QB=8−t,
作EF∥BC交CD于E,交PQ于H,如图2所示:
则F为CD的中点,H为PQ的中点,EF=BC=8,
∴EH是梯形ABQP的中位线,
∴EH= (AP+BQ)=4,
∵PG=4QG,
∴GH:GQ=3:2,
∵EF∥BC,
∴△EGH∽△CGQ,
∴ = ,即4t=,
解得:t=,
∴若PG=4QG,t的为 值;
(3)不存在,理由如下:
∵∠B=90°,BE=6,BC=8,
∴CE= =10,
作EM∥BC交PQ于M,如图3所示:
由(2)得:ME=4,
∵PQ⊥CE,
∴∠CGQ=90°=∠B,
∵∠GCQ=∠BCE,
∴△GCQ∽△BCE,
∴ ,即=,
∴CG=t,
∴EG=10−t,
∵EM∥BC,
∴△GME∽△GQC,
∴ ,即 ,
解得:t=0或t=8.5,
∵0
此题考查四边形综合题,解题关键在于作辅助线
16、 (1)见解析;(2)见解析.
【解析】
(1)连接AC,根据三角形的中位线的性质即可求解;
(2)根据菱形的判定定理即可求解.
【详解】
(1)证明:连接.
∵、、、分别是、、、的中点,
∴、分别是、的中位线,
∴,,,,
∴,,
∴四边形是平行四边形.
(2)解:四边形是菱形.理由如下:
∵,,,
∴,又由(1)可知四边形是平行四边形,
∴四边形是菱形.
此题主要考查平行四边形的判定与性质,解题的关键是熟知菱形的判定定理与平行四边形的的判定与性质.
17、
【解析】
首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.
【详解】
解:方程两边乘以得:,
解这个方程得:,
检验:当时,,
是原方程的解;
原方程的解是:.
本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.
18、(1)饮用水和蔬菜分别为1件和2件
(2)设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车3辆,乙车3辆
(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元
【解析】
试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;
(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;
(3)分别计算出相应方案,比较即可.
试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解这个方程,得x=1.
∴x﹣80=2.
答:饮用水和蔬菜分别为1件和2件;
(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:
,
解这个不等式组,得2≤m≤3.
∵m为正整数,
∴m=2或3或3,安排甲、乙两种货车时有3种方案.
设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;
(3)3种方案的运费分别为:
①2×300+6×360=2960(元);
②3×300+5×360=3000(元);
③3×300+3×360=3030(元);
∴方案①运费最少,最少运费是2960元.
答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
解:这组数据的平均数为2,
有 (2+2+0-2+x+2)=2,
可求得x=2.
将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
其平均数即中位数是(2+2)÷2=2.
故答案是:2.
20、 (﹣,2)
【解析】
根据一次函数图象上点的坐标特征可求出点A、B的坐标,由BC=OC利用等腰三角形的性质可得出OC、OE的值,再利用勾股定理可求出CE的长度,此题得解.
【详解】
∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,
∴点A的坐标为(3,0),点B的坐标为(0,4).
过点C作CE⊥y轴于点E,如图所示.
∵BC=OC=OA,
∴OC=3,OE=2,
∴CE==,
∴点C的坐标为(﹣,2).
故答案为:(﹣,2).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及勾股定理,利用等腰直角三角形的性质结合勾股定理求出CE、OE的长度是解题的关键.
21、1
【解析】
根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.
【详解】
解:∵正方形PQED的面积等于225,
∴即PQ2=225,
∵正方形PRGF的面积为289,
∴PR2=289,
又△PQR为直角三角形,根据勾股定理得:
PR2=PQ2+QR2,
∴QR2=PR2-PQ2=289-225=1,
则正方形QMNR的面积为1.
故答案为:1.
此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.
22、(1)、(2)、(4).
【解析】
∵四边形ABCD是正方形,
∴AB=AD=CD=BC,∠BAD=∠ADC=90°.
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE.
在△BAF和△ADE中,
,
∴△BAF≌△ADE(SAS),
∴AE=BF,S△BAF=S△ADE,∠ABF=∠DAE,
∴S△BAF-S△AOF=S△ADE-S△AOF,
即S△AOB=S四边形DEOF.
∵∠ABF+∠AFB=90°,
∴∠EAF+∠AFB=90°,
∴∠AOF=90°,
∴AE⊥BF;
连接EF,在Rt△DFE中,∠D=90°,
∴EF>DE,
∴EF>AF,
若AO=OE,且AE⊥BF;
∴AF=EF,与EF>AF矛盾,
∴假设不成立,
∴AO≠OE.
∴①②④是正确的,
故答案是:①②④.
【点睛】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,三角形的面积关系的运用及直角三角形的性质的运用,在解答中求证三角形全等是关键.
23、
【解析】
由S正方形ABCD=2S△ABE=9,先求出正方形的边长,再在Rt△BCE中,利用勾股定理即可解决问题.
【详解】
解:∵四边形ABCD是正方形,
∴AB=CD=BC,∠C=90°,
∵S正方形ABCD=2S△ABE=9,
∴AB=CD=BC=3,
∵DE=1,
∴EC=2,
在Rt△BCE中,∵∠C=90°,BC=3,EC=2,
∴BE=
故答案为:.
本题考查正方形的性质、勾股定理等知识,解题的关键是S正方形ABCD=2S△ABE的应用,记住这个结论,属于中考常考题型.
二、解答题(本大题共3个小题,共30分)
24、 (1)详见解析;(2)结论成立,理由详见解析.
【解析】
(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.
【详解】
(1)∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴∠BCA=60°,
∵E是线段AC的中点,
∴∠CBE=∠ABE=30°,AE=CE,
∵CF=AE,
∴CE=CF,
∵∠ECF=120°,
∴∠F=∠CEF=30°
∴∠CBE=∠F=30°,
∴BE=EF;
(2)结论成立;理由如下:
过点E作EG∥BC交AB于点G,如图2所示:
∵四边形ABCD为菱形,
∴AB=BC,∠BCD=120°,AB∥CD,
∴∠ACD=60°,∠DCF=∠ABC=60°,
∴∠ECF=120°,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等边三角形,
∴AG=AE=GE,∠AGE=60°,
∴BG=CE,,
又∵CF=AE,
∴GE=CF,
∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,
∴△BGE≌△ECF(SAS),
∴BE=EF.
本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.
25、(1)15,;(2)s=t;(2)2千米
【解析】
(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;
(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;
(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.
【详解】
解:(1)20﹣15=15(分钟);
4÷(45﹣20)=(千米/分钟).
故答案为:15;.
(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,
将(0,0)、(45,4)代入s=mt+n中,
,解得:,
∴s=t.
∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.
(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,
,解得:,
∴s=﹣t+1.
令s=t=﹣t+1,
解得:t=,
∴s=t=×=2.
答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.
本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.
26、(1)125,75,75,70;(2)①见解析;②见解析.
【解析】
(1)根据平均数、方差、中位数、众数的概念以及求解方法分别进行求解即可得;
(2)①根据平均数以及方差的大小关系进行比较分析即可;
②根据折线图的走势进行分析即可.
【详解】
(1)甲方差:,
甲的中位数:75,
乙的平均数:,
乙的众数为70,
故答案为:125,75,75,70;
(2)①从平均数看,甲同学的成绩比乙同学稍好,但是从方差看,乙同学的方差小,乙同学成绩稳定,综合平均数和方差分析,乙同学总体成绩比甲同学好;
②从折线图上两名同学分数的走势,甲同学的成绩在稳步直线上升,属于进步计较快,乙同学的成绩有较大幅度波动,不算稳定.
本题考查了折线统计图,正确理解方差、中位数、平均数、众数的含义是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
方差
中位数
众数
甲
75
75
乙
33.3
72.5
2024-2025学年四川省成都市成飞中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川省成都市成飞中学高一新生入学分班质量检测数学试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都盐道街中学高一新生入学分班质量检测数学试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川成都田家炳中学高一新生入学分班质量检测数学试题【含答案】: 这是一份2024-2025学年四川成都田家炳中学高一新生入学分班质量检测数学试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。