陕西省西安高新第一中学2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份陕西省西安高新第一中学2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为( )
A.4B.C.D.28
2、(4分)如果一个多边形的内角和是它外角和的倍,那么这个多边形的边数为( )
A.B.C.D.
3、(4分)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为( )
A.4mB.5mC.6mD.8m
4、(4分)下列事件中,确定事件是( )
A.向量与向量是平行向量B.方程有实数根;
C.直线与直线相交D.一组对边平行,另一组对边相等的四边形是等腰梯形
5、(4分)以下列各组数据为边长作三角形,其中能组成直角三角形的是( )
A.5,12,13B.3,5,2C.6,9,14D.4,10,13
6、(4分)将直线y=-2x向上平移5个单位,得到的直线的解析式为( )
A.y=-2x-5 B.y=-2x+5 C.y=-2(x-5) D.y=-2(x+5)
7、(4分)如图,在中,,点是的中点,交于点,,则的长为( )
A.B.C.D.
8、(4分)如图,将的一边延长至点,若,则等于( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数(是常数,)的图象经过点,若,则的值是________.
10、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.
11、(4分)如图,边长为的正方形和边长为的正方形排放在一起,和分别是两个正方形的对称中心,则的面积为________.
12、(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为______.
13、(4分)已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点
(1)填空: ;求直线的解析式为 ;
(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;
(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.
15、(8分)如图,在平面直角坐标系中,已知点A(-3,0),B(0,-1),C(0,)三点.
(1)求直线AB的解析式.
(2)若点D在直线AB上,且DB=DC,尺规作图作出点D(保留作图痕迹),并求出点D的坐标.
16、(8分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,
(1)若CD=1cm,求AC的长;
(2)求证:AB=AC+CD.
17、(10分)如图,在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求证:AF是∠DAB的平分线.
18、(10分)如图,已知线段a,b,∠α(如图).
(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作____个.
(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果多边形的每个外角都是40°,那么这个多边形的边数是_____.
20、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
21、(4分)如图,在中,点D、E分别是AB、AC的中点,连接BE,若,,,则的周长是_________度.
22、(4分)在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.
23、(4分)若,则=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件. (销售利润=销售总额-进货成本)
(1)若该纪念品的销售单价为45元时则当天销售量为______件。
(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元。
(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由。
25、(10分)如图,于点,于点,与相交于点,连接线段,恰好平分.
求证:.
26、(12分)现有两家可以选择的快递公司的收费方式如下.
甲公司:物品重量不超过1千克的,需付费20元,超过1千克的部分按每千克4元计价.
乙公司:按物品重量每千克7元计价,外加一份包装费10元.设物品的重量为x千克,甲、乙公司快递该物品的费用分别为,.
(1)分别写出 和与x的函数表达式(并写出x的取值范围);
(2)图中给出了与x的函数图象,请在图中画出(1)中与x的函数图象(要求列表,描点).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
【详解】
解:∵E,F分别是AB,BC边上的中点,EF=,
∴AC=2EF=2,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=,OB=BD=2,
∴AB==,
∴菱形ABCD的周长为4.
故选C.
2、B
【解析】
根据多边形的内角和公式(n−2)⋅110°与外角和定理列出方程,然后求解即可.
【详解】
解:设这个多边形是n边形,
根据题意得,(n−2)⋅110°=3×360°,
解得n=1.
故选B.
本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.
3、D
【解析】
试题分析:连接OA,根据垂径定理可得AB=2AD,根据题意可得:OA=5m,OD=CD-OC=8-5=3m,根据勾股定理可得:AD=4m,则AB=2AD=2×4=8m.
考点:垂径定理.
4、B
【解析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.
【详解】
A. 向量与向量是平行向量,是随机事件,故该选项错误;
B. 方程有实数根,是确定事件,故该选项正确;
C. 直线与直线相交,是随机事件,故该选项错误;
D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;
故选:B.
本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.
5、A
【解析】
先分别求出两个小边的平方和,再求出最长边的平方,看看是否相等即可.
【详解】
解:A、52+122=132,即以5、12、13为边能组成直角三角形,故本选项符合题意;
B、32+52≠(2)2,即以3、5、2为边不能组成直角三角形,故本选项不符合题意;
C、62+92≠142,即以6、9、14为边不能组成直角三角形,故本选项不符合题意;
D、42+102≠132,即以4、10、13为边不能组成直角三角形,故本选项不符合题意;
故选:A.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
6、B
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
y=-2x向上平移5个单位,上加下减,可得到y=-2x+5
故答案为:B
考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.
7、C
【解析】
连接BE,利用HL说明BC=BD,由于在Rt△CBA中,BA=2BC,得到∠A=30°,在Rt△DEA中,利用∠A的正切值与边的关系,得到AD的长,再计算出AB的长.
【详解】
解:连接BE,
∵D是AB的中点,
∴BD=AD=AB
∵∠C=∠BDE=90°,
在Rt△BCE和Rt△BDE中,
∵ ,
∴△BCD≌△BDE,
∴BC=BD=AB.
∴∠A=30°.
∴tanA=
即,
∴AD=3,
∴AB=2AD=1.
故选C.
本题考查直角三角形的判定、特殊角的三角函数值及锐角三角函数.解题的关键是根据边间关系得出∠A的度数.
8、A
【解析】
根据平行四边形的对角相等得出∠C=∠BAD,再根据平角等于180°列式求出∠BAD=110°,即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠C=∠BAD,
∵∠EAD=70°,
∴∠BAD=180°-∠EAD=110°,
∴∠C=∠BAD=110°.
故选A.
本题考查了平行四边形的对角相等的性质,是基础题,熟记平行四边形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
将点A(2,3)代入一次函数y=kx+b中即可求解.
【详解】
∵一次函数y=kx+b(k,b是常数,k≠0)的图象经过点A(2,3),
∴2k+b=3,
∵kx+b=3,
∴x=2
故答案是:2
考查的是一次函数图象上点的坐标特征,掌握图象上的点一定满足对应的函数解析式是解答此题的关键.
10、
【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.
【详解】
解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,
根据勾股定理可得菱形的边长为
故答案为:.
此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.
11、
【解析】
由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.
【详解】
解:∵O1和O2分别是这两个正方形的中心,
∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,
∴∠O1BO2=∠O1BC+∠O2BC=90°,
∴阴影部分的面积=×4×3=12.
故答案是:12.
本题考查的是正方形的综合运用,熟练掌握对称中心是解题的关键.
12、x>1
【解析】
从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.
【详解】
解:函数y=kx+b的图象经过点(1,0),并且函数值y随x的增大而减小,
所以当x>1时,函数值小于0,即关于x的不等式kx+b<0的解集是x>1.
故答案为x>1.
此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、2
【解析】
如图,由△ABP的面积为4,知BP•AP=1.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
【详解】
如图
解:∵△ABP的面积为 BP•AP=4,
∴BP•AP=1,
∵P是AC的中点,
∴A点的纵坐标是B点纵坐标的2倍,
又∵点A、B都在双曲线(x>0)上,
∴B点的横坐标是A点横坐标的2倍,
∴OC=DP=BP,
∴k=OC•AC=BP•2AP=2.
故答案为:2.
主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题时一定要正确理解k的几何意义.
三、解答题(本大题共5个小题,共48分)
14、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.
【解析】
(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;
(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;
(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.
【详解】
解:(1)点在函数的图象上,
,
,
直线过点、,
可得方程组为,
解得,
直线的解析式为;
故答案为:;
(2)是与轴的交点,当时,,
,坐标为,
又的面积是面积的2倍,
第一种情况,当在线段上时,
,
,即,
∴,
坐标,
第二种情况,当在射线上时,
,
,
,
坐标,
点的坐标为或;
(3)、、不能围成三角形,
直线经过点或或,
①直线的解析式为,
把代入到解析式中得:
,
,
②当时,
∵直线的解析式为,
,
③当时,
∵直线的解析式为,
,
即的值为或或.
此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.
15、(1)y=x-1;(2)画图见解析,点D的坐标为(,).
【解析】
(1)设直线AB解析式为:y=kx+b,把A,B坐标代入,求解即可;
(2)按照题目要求画图即可,根据题意可得点D在线段BC垂直平分线上,据此可求出D点坐标.
【详解】
(1)设直线AB解析式为:y=kx+b,
代入点A(-3,0),B(0,-1),
得:,
解得,
∴直线AB解析式为:y=x-1;
(2)如图所示:
∵B(0,-1),C(0,),DB=DC,
∴点D在线段BC垂直平分线上,
∴D的纵坐标为,
又∵点D在直线AB上,
令y=,得x=,
∴点D的坐标为(,).
本题考查了用待定系数法求一次函数解析式,尺规作图,垂直平分线的性质,掌握知识点是解题关键.
16、(1);(2)证明见解析.
【解析】
(1)根据角平分线上的点到两边的距离相等可得DE=CD=1cm,再判断出△BDE为等腰直角三角形,然后求出BD,再根据AC=BC=CD+BD求解即可;
(2)利用“HL”证明△ACD与△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.
【详解】
(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,
∴DE=CD=1cm,
又∵AC=BC ,∠C=90°,
∴∠B=∠BAC =45°,
∴△BDE为等腰直角三角形.
∴BD=DE=cm ,
∴AC=BC=CD+BD= (1+)cm.
(2)证明:在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∵△BDE为等腰直角三角形,
∴BE=DE=CD,
∵AB=AE+BE,
∴AB=AC+CD.
本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质.熟记各性质是解题的关键.
17、见解析
【解析】
分析:(1)由平行四边形的性质和已知条件得出BE=DF,证明四边形BFDE为平行四边形,再由DE⊥AB,即可得出结论;
(2)由矩形的性质和勾股定理求出BC,得出AD=BC=DF,证出∠DAF=∠DFA,再由平行线的性质即可得出结论.
详解:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵CF=AE,
∴BE=DF.∴四边形BFDE为平行四边形.
∵DE⊥AB,
∴∠DEB=90°
.∴四边形BFDE是矩形.
(2)∵四边形BFDE是矩形,
∴∠BFD=90°.
∴∠BFC=90°
.在Rt△BFC中,由勾股定理得BC==10.
∴AD=BC=10.
又∵DF=10,
∴AD=DF
.∴∠DAF=∠DFA.
∵AB∥CD,
∴∠DFA=∠FAB.
∴∠DAF=∠FAB.
∴AF是∠DAB的平分线.
点睛:本题考查了平行四边形的性质、矩形的判定与性质、勾股定理、等腰三角形的判定;熟练掌握平行四边形的性质,证明四边形BFDE是矩形是解决问题的关键.
18、 (1)无数;(2)图形见解析;1.
【解析】
(1)内角不固定,有无数个以线段a,b为一组邻边作平行四边形;
(2)作∠MAN=a,以A为圆心,线段a和线段b为半径画弧分别交射线AN和AM于点D和B,以D为圆心,线段b为半径画弧,以B为圆心,线段a为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD就是所求作的图形.
【详解】
解:(1)以线段a,b为一组邻边作平行四边形,这样的平行四边形能作无数个,
故答案为:无数;
(2)以线段a,b为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD即为所求.
故答案为:1.
此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
【详解】
解:多边形的边数是: =1,
故答案为:1.
此题考查多边形内角(和)与外角(和),解题关键在于掌握运算公式
20、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
21、26
【解析】
由题意可知,DE为的中位线,依据中位线定理可求出BC的长,因为,故BE=BC,而EC=AE,此题得解.
【详解】
解:点D、E分别是AB、AC的中点
DE为的中位线,
又
故答案为:26
本题考查了中位线定理、等角对等边,熟练利用这两点求线段长是解题的关键.
22、0.1.
【解析】
直接利用频数÷总数=频率,进而得出答案.
【详解】
解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,
∴第5组的频率为:(30-2-10-7-8))÷30=0.1.
故答案为:0.1.
本题考查频数与频率,正确掌握频率求法是解题关键.
23、1
【解析】
根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案
【详解】
∵
∴
∴
∴
故答案为1.
本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1.(2)当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.(3)不能,理由见解析.
【解析】
(1)根据当天销售量=283﹣13×增加的销售单价,即可求出结论;
(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;
(3)设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于y的一元二次方程,由该方程根的判别式△=﹣36<3,可得出该方程无解,进而可得出该纪念品的当天销售利润不能达到3733元.
【详解】
解:(1)283﹣(45﹣43)×13=1(件).故答案为:1.
(2)设该纪念品的销售单价为x元(x>43),则当天的销售量为[283﹣(x﹣43)×13]件,
依题意,得:(x﹣33)[283﹣(x﹣43)×13]=2613,整理,得:x2﹣98x+11=3,整理,得:x1=39(不合题意,舍去),x2=2.
答:当该纪念品的销售单价为2元时,该产品的当天销售利润是2613元.
(3)不能,理由如下:
设该纪念品的销售单价为y元(y>43),则当天的销售量为[283﹣(y﹣43)×13]件,
依题意,得:(y﹣33)[283﹣(y﹣43)×13]=3733,
整理,得:y2﹣98y+2413=3.
∵△=(﹣98)2﹣4×1×2413=﹣36<3,
∴该方程无解,即该纪念品的当天销售利润不能达到3733元.
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
25、见解析.
【解析】
由角平分线的性质得出OE=OD,证得△BOE≌△COD,即可得出结论.
【详解】
∵于点,于点,恰好平分
∴,
∵
∴
∴
本题考查了角平分线的性质、全等三角形的判定与性质等知识,熟练掌握角平分线的性质、证明三角形全等是解题的关键.
26、(1),;
(2)
图象见解析
【解析】
(1)根据题目中甲乙公司不同的收费方式结合数量关系,找出和与x之间的关系;
(2)根据的方程进行列表,依次描点连线即可得出函数图象.
【详解】
解:(1)设物品的重量为x千克
由题意可得;;
(2)列表为
函数图象如下:
故本题最后答案为:(1),;
(2)
图象如上所示.
(1)本题主要考查了一次函数的应用,解题的关键是根据不同的x的范围列出不同的解析式,其中不要忽略本题为实际问题,即x的取值范围为正;
(2)本题主要考查了函数图象的画法,明确画函数图象的步骤是解题的关键.
题号
一
二
三
四
五
总分
得分
x
…
_____
_____
…
y
…
_____
_____
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
x
…
__1___
__2___
_3___
…
y
…
___17__
__24___
_31___
…
相关试卷
这是一份陕西省西安市交大附中2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市高新第一中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安高新第二初级中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。