2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)满足下列条件的三角形中,不是直角三角形的是( )
A.三内角的度数之比为1∶2∶3 B.三内角的度数之比为3∶4∶5
C.三边长之比为3∶4∶5 D.三边长的平方之比为1∶2∶3
2、(4分)若函数的图象过,则关于此函数的叙述不正确的是( )
A.y随x的增大而增大B.
C.函数图象经过原点D.函数图象过二、四象限
3、(4分)若a为有理数,且满足|a|+a=0,则( )
A.a>0B.a≥0C.a<0D.a≤0
4、(4分)将直线向下平移个单位后所得直线的解析式为( )
A.B.C.D.
5、(4分)一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是( )
A.88 B.90 C.90.5 D.91
6、(4分)如图,三个正比例函数的图像分别对应的解析式是:①;②;③,则、、的大小关系是( ).
A.B.C.D.
7、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是( )
A.B.C.D.
8、(4分)如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b<0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
10、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
11、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.
12、(4分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为____.
13、(4分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,则乙施工队单独完成此项工程需_____天.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示的一块地,AD=8 m,CD=6 m,∠ADC=90°,AB=26 m,BC=24 m.求这块地的面积.
15、(8分)如图,△ABC全等于△DEF,点B,E,C,F在同一直线,连接AD,求证:四边形ABED是平行四边形.
16、(8分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.
(1)求DE的长;
(2)求△ADB的面积.
17、(10分)初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:
(1)本次调查共抽测了多少名学生?
(2)在这个问题中的样本指什么?
(3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?
18、(10分)已知a+b=5,ab=6,求多项式a3b+2a2b2+ab3的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.
20、(4分)将点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A′的坐标为 ______________.
21、(4分)某班30名学生的身高情况如下表:
则这30名学生的身高的众数是______.
22、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.
23、(4分)已知x1,x2,x3的平均数=10,方差s2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
25、(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.
26、(12分)某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
(1)求,两种型号电机的进价;
(2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;
B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;
C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;
D、因为1+2=3,所以是直角三角形.
故选B.
2、A
【解析】
将(2,-3)代入一次函数解析式中,求出一次函数解析式,根据解析式得出一次函数图像与性质即可得出答案.
【详解】
将(2,-3)代入中
2k=-3,解得
∴一次函数的解析式为:
A:根据解析式可得y随x的增大而减小,故A选项正确;
B:,故B选项错误;
C:为正比例函数,图像经过原点,故C选项错误;
D:根据解析式可得函数图像经过二、四象限,故D选项错误.
故答案选择A.
本题考查了用待定系数法求一次函数解析式以及根据一次函数解析式判断函数的图像与性质.
3、D
【解析】
试题解析:
即为负数或1.
故选D.
4、D
【解析】
只向下平移,让比例系数不变,常数项减去平移的单位即可.
【详解】
直线向下平移个单位后所得直线的解析式为
故选:D
本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.
5、B
【解析】
先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.
【详解】
将小明所在小组的5个同学的成绩重新排列为:88、90、90、91、97,
所以这组数据的中位数为90分,
故选B.
本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
6、C
【解析】
根据正比例函数图象的性质分析,k>0,经过一、三象限;k<0,经过二、四象限,图像越靠近y轴越大,即可得到答案.
【详解】
解:根据图像可知,①与②经过一、三象限,③经过二、四象限,
∴,,,
∵②越靠近y轴,则,
∴大小关系为:;
故选择:C.
本题考查了正比例函数图象的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越靠近y轴,则|k|越大.
7、C
【解析】
把B点的横坐标减2,纵坐标加1即为点B´的坐标.
【详解】
解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
∴点B´的坐标是(−3,2).
故选:C.
本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.
8、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
【详解】
解:延长F至G,使CG=AE,连接DG、EF,如图所示:
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
∴∠DCG=90°,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴DE=DG,∠ADE=∠CDG,
∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
∵∠EDF=45°,
∴∠GDF=45°,
在△EDF和△GDF中,,
∴△EDF≌△GDF(SAS),
∴EF=GF,
∵F是BC的中点,
∴BF=CF=3,
设AE=CG=x,则EF=GF=CF+CG=3+x,
在Rt△BEF中,由勾股定理得:,
解得:x=2,即AE=2,
∴BE=AB-AE=6-2=4.
此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
10、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
11、1
【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.
【详解】
一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.
本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.
12、3
【解析】
根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.
【详解】
∵∠ACB=∠AC′B′=90°,AC=BC=3,
∴AB=3,∠CAB=45°,
∵△ABC和△A′B′C′全等,
∴∠C′AB′=∠CAB=45°,AB′=AB=3,
∴∠CAB′=90°,
∴B′C==3,
故答案为3.
本题考查的是勾股定理的应用、等腰直角三角形的性质,解题关键在于利用勾股定理计算
13、2.
【解析】
求的是工效,工作时间,一定是根据工作总量来列等量关系.等量关系为:甲20天的工作总量+乙22天的工作总量=2.
【详解】
解:设甲施工队单独完成此项工程需x天,
则乙施工队单独完成此项工程需x天.
根据题意得:.
解这个方程得:x=3.
经检验:x=3是所列方程的解.
∴当x=3时,x=2.
故答案为2
应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、96 m2 .
【解析】
先连接AC,在Rt△ACD中,利用勾股定理可求AC,进而求出AC2+BC2=AB2,利用勾股定理逆定理可证△ABC是直角三角形,再利用S四边形ABCD=S△ABC-S△ACD,即可求地的面积.
【详解】
解:连接AC,则△ADC为直角三角形,
因为AD=8,CD=6,
所以AC=10.
在△ABC中,AC=10,BC=24,AB=26.
因为102+242=262,
所以△ABC也是直角三角形.
所以这块地的面积为S=S△ABC-S△ADC=AC·BC-AD·CD=×10×24-×8×6=120-24=96 m2.
所以这块地的面积为96 m2 .
故答案为96 m2
本题考查了勾股定理及其逆定理的应用.关键是根据∠ADC =90°,构造直角三角形ACD,并证出△ABC是直角三角形.
15、见解析
【解析】
根据全等三角形的性质得到AB∥DE且AB=DE,即可证明四边形ABED是平行四边形.
【详解】
∵△ABC≌△DEF
∴∠B=∠DEF,AB=DE
∴AB∥DE.
∴AB=DE,AB∥DE
∴四边形ABED是平行四边形.
此题主要考查平行四边形的判定,解题的关键是熟知全等三角形的性质及平行四边形的判定定理.
16、(1)1;(2)15
【解析】
(1)通过证明,即可得出DE的长;
(2)根据三角形面积公式求解即可.
【详解】
(1)∵DE⊥AB
∴
∴在中
∴
∴
(2)∵BC=8,CD=1
∴
∴
本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.
17、(1)共抽测了240名学生 (2)样本是240名学生的视力情况
(3)
【解析】
解:(1)共抽测了学生人数:20+40+90+60+30=240(名)
(2)易知题意为调查某市3万学生是哩情况所抽取学生视力情况样本,故样本是240名学生的视力情况
(3)依题意知,视力在4.9-5.1(含4.9和5.1)均属正常,可从直方图判断一共有(60+30)人合格.故3万学生合格人数为:
(名)
考点:抽样调查
点评:本题难度较低,主要考查学生对抽样调查及直方统计图知识点的掌握,正确读懂统计图数据位解题关键.
18、1
【解析】
对所求的式子先提公因式,然后将a+b=5,ab=6代入即可解答本题.
【详解】
∵a+b=5,ab=6,
∴a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=6×52
=6×25
=1.
本题考查因式分解的应用,解答本题的关键是对所求式子变形,找出与已知式子之间的关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①②③④
【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.
【详解】
∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,
∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA ,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;
∴AD=EF,AD∥EF,
设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.
本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.
20、 (-2,2)
【解析】
由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.
【详解】
解:∵点A(1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A′,
∴点A′的横坐标为1-3=-2,纵坐标为-3+5=2,
∴A′的坐标为(-2,2).
故答案为:(-2,2).
本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
21、1.1.
【解析】
根据众数的定义,即出现次数最多的
【详解】
在这一组数据中1.1出现了8次,次数最多,故众数是1.1.
故答案为1.1.
此题考查众数,难度不大
22、2
【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
∴OE=AB=2,
故答案为:2.
此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.
23、20 12
【解析】
∵=10,
∴=10,
设2,2,2的方差为,
则=2×10=20,
∵ ,
∴
=
=4×3=12.
故答案为20;12.
点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)根据已知条件画出图形即可;
(2)因为AF∥EC,得出∠DFA=∠DEC,∠DAF=∠DCE,因为D是AC的中点,可得DA=DC,推出△DAF≌△DCE,得到AF=CE,因为AF∥EC,即四边形AFCE是平行四边形;
【详解】
解:
(1)根据已知条件画出图形如下:
(2)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;
又∵AF∥EC,
∴四边形AFCE是平行四边形;
本题主要考查了平行四边形的判定与性质,掌握平行四边形的判定是解题的关键.
25、10+1.
【解析】
先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
【详解】
∵∠ACB=90°,DE⊥BC,
∴AC∥DE.
又∵CE∥AD,
∴四边形ACED是平行四边形.
∴DE=AC=1.
在Rt△CDE中,由勾股定理得CD==1.
∵D是BC的中点,
∴BC=1CD=2.
在△ABC中,∠ACB=90°,由勾股定理得AB==1.
∵D是BC的中点,DE⊥BC,
∴EB=EC=2.
∴四边形ACEB的周长=AC+CE+EB+BA=10+1.
本题考查了平行四边形的判定与性质,勾股定理和中线的定义,注意寻找求AB和EB的长的方法和途径.
26、(1)进价元,进价元;(2)购进型至少台
【解析】
(1) 设进价为元,则进价为元,根据元购进型电机的数量与用元购进型电机的数量相等,即可得出关于x的分式方程,解分式方程经检验后即可得出结论;
(2) 设购进型台,则购进型台,根据用不超过元的资金购进,两种型号的电机共台,即可得出关于y的一元一次不等式,解不等式即可得出结论.
【详解】
(1)解:设进价为元,则进价为元,
解得:
经检验是原分式方程的解
进价元,进价元.
(2)设购进型台,则购进型台.
购进型至少台.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,正确列出分式方程.
题号
一
二
三
四
五
总分
得分
身高(m)
1.45
1.48
1.50
1.53
1.56
1.60
人数
2
5
6
8
5
4
2024-2025学年山东省牡丹区王浩屯镇初级中学九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年山东省牡丹区王浩屯镇初级中学九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年山东省菏泽市王浩屯中学数学九年级第一学期期末经典模拟试题含答案: 这是一份2023-2024学年山东省菏泽市王浩屯中学数学九年级第一学期期末经典模拟试题含答案,共9页。试卷主要包含了下列事件等内容,欢迎下载使用。
2023-2024学年山东省牡丹区王浩屯镇初级中学数学九上期末统考试题含答案: 这是一份2023-2024学年山东省牡丹区王浩屯镇初级中学数学九上期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知,则的值是,下列运算中,正确的是等内容,欢迎下载使用。