|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】01
    2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】02
    2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】

    展开
    这是一份2024-2025学年抚顺市重点中学数学九年级第一学期开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在二次根式中,a能取到的最小值为( )
    A.0B.1C.2D.2.5
    2、(4分)下列说法中错误的是( )
    A.“买一张彩票中奖”发生的概率是0
    B.“软木塞沉入水底”发生的概率是0
    C.“太阳东升西落”发生的概率是1
    D.“投掷一枚骰子点数为8”是确定事件
    3、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
    A.5B.3.75C.4D.2.5
    4、(4分)△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为( )
    A.B.C.D.
    5、(4分)为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1名考生的成绩进行统计.下列说法:
    ①这50000名学生的数学考试成绩的全体是总体;
    ②每个考生是个体;
    ③1名考生是总体的一个样本;
    ④样本容量是1.
    其中说法正确的有( )
    A.4个B.3个C.2个D.1个
    6、(4分)有下列的判断:
    ①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形
    ②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形
    ③如果△ABC 是直角三角形,那么a2+b2=c2
    以下说法正确的是( )
    A.①② B.②③ C.①③ D.②
    7、(4分)如图,中,,,将绕点逆时针旋转得到,若点的对应点落在边上,则旋转角为( )
    A.B.C.D.
    8、(4分)我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为( )
    A.4B.3C.2D.1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某高科技开发公司从2013年起开始投入技术改进资金,经过技术改进后,其产品的生产成本不断降低,具体数据如下表:请你认真分析表中数据,写出可以表示该变化规律的表达式是____________.
    10、(4分)如图,中,对角线相交于点,,若要使平行四边形为矩形,则的长度是__________.
    11、(4分)如图,在平面直角坐标系xOy中,直线l1,l2分别是函数y=k1x+b1和y=k2x+b2的图象,则可以估计关于x的不等式k1x+b1>k2x+b2的解集为_____.
    12、(4分)用4个全等的正八边形拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用个全等的正六边形按这种方式拼接,如图2,若围成一圈后中间也形成一个正多边形,则的值为__________.
    13、(4分)如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是__________。
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.
    (1)在网格1中画出面积为20的菱形(非正方形);
    (2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长 .
    15、(8分)探索与发现
    (1)正方形ABCD中有菱形PEFG,当它们的对角线重合,且点P与点B重合时(如图1),通过观察或测量,猜想线段AE与CG的数量关系,并证明你的猜想;
    (2)当(1)中的菱形PEFG沿着正方形ABCD的对角线平移到如图2的位置时,猜想线段AE与CG的数量关系,只写出猜想不需证明.
    16、(8分)甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.
    (1)租用一辆甲种客车、一辆乙种客车各多少元?
    (2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
    17、(10分)耒阳市某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
    请根据图中提供的信息,完成下列问题:
    (1)在这次问卷调查中,喜欢“科普书籍”出现的频率为 ;
    (2)补全条形图;
    (3)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;
    (4)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?
    18、(10分)已知:如图,在四边形ABCD中,过A,C分别作AD和BC的垂线,交对角线BD于点E,F,AE=CF,BE=DF.
    (1)求证:四边形ABCD是平行四边形;
    (2)若BC=4,∠CBD=45°,且E,F是BD的三等分点,求四边形ABCD的面积.(直接写出结论即可)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知y=++9,则(xy-64)2的平方根为______.
    20、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
    21、(4分)若的整数部分为,小数部分为,则的值是___.
    22、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    23、(4分)在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)对于自变量的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量不同的取值范围内,对应的函数表达式也不同.例如:是分段函数,当时,函数的表达式为;当时,函数表达式为.
    (1)请在平面直角坐标系中画出函数的图象;
    (2)当时,求的值;
    (3)当时,求自变量的取值范围.
    25、(10分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
    (1)求直线AD的解析式;
    (2)直线AD与x轴交于点B,请判断△ABC的形状;
    (3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
    26、(12分)先化简,再求值:(a+)÷,其中a=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据二次根式的定义求出a的范围,再得出答案即可.
    【详解】
    要使有意义,必须a-2≥0,
    即a≥2,
    所以a能取到的最小值是2,
    故选C.
    本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.
    2、A
    【解析】
    直接利用概率的意义以及事件的确定方法分别分析得出答案.
    【详解】
    A、“买一张彩票中奖”发生的概率是0,错误,符合题意;
    B、“软木塞沉入水底”发生的概率是0,正确,不合题意;
    C、“太阳东升西落”发生的概率是1,正确,不合题意;
    D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;
    故选:A.
    此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.
    3、B
    【解析】
    观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
    【详解】
    每分钟的进水量为:20÷4=5(升),
    每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
    故选B.
    本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
    4、D
    【解析】
    直接根据相似三角形的性质即可得出结论.
    【详解】
    解:∵△ABC∽△DEF,且△ABC与△DEF相似比为1:4,
    ∴△ABC与△DEF的面积比=()2=1:16,
    故答案为:D
    本题考查的是相似三角形的性质,熟知相似三角形的面积的比等于相似比的平方是解答此题的关键.
    5、C
    【解析】
    总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
    【详解】
    ①这50000名学生的数学考试成绩的全体是总体,说法正确;
    ②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;
    ③1名考生是总体的一个样本,说法错误,应是1名考生的数学成绩是总体的一个样本;
    ④样本容量是1,说法正确;
    正确的说法共2个.
    故选C.
    本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
    6、D
    【解析】【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.
    【详解】①c不一定是斜边,故错误;
    ②正确;
    ③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,
    所以正确的只有②,
    故选D.
    【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.
    7、C
    【解析】
    先根据等腰三角形的性质求得∠ABC=∠C=70°,继而根据旋转的性质即可求得答案.
    【详解】
    ∵AB=AC,∠A=40°,
    ∴∠ABC=∠C=(180°-∠A)=×140°=70°,
    ∵△EBD是由△ABC旋转得到,
    ∴旋转角为∠ABC=70°,
    故选C.
    本题考查了等腰三角形的性质,旋转的性质,熟练掌握相关知识是解题的关键.
    8、D
    【解析】
    设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.
    【详解】
    设勾为x,股为y(x<y),
    ∵大正方形面积为9,小正方形面积为5,
    ∴4×xy+5=9,
    ∴xy=2,
    ∵x2+y2=5,
    ∴y﹣x====1,
    (x﹣y)2=1,
    故选:D.
    本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、y=
    【解析】
    有表格中数据分析可知xy=2.5×7.2=3×6=4×4.5=4.5×4=18,就可得到反比例函数关系,再设出反比例函数解析式,利用待定系数法求出即可.
    【详解】
    由题意可得此函数解析式为反比例函数解析式,设其为解析式为y=.
    当x=2.5时,y=7.2,
    可得7.2=,
    解得k=18
    ∴反比例函数是y=.
    此题主要考查反比例函数的应用,解题的关键是根据题意找出等量关系.
    10、
    【解析】
    根据矩形的性质得到OA=OC=OB=OD,可得出结果.
    【详解】
    解:假如平行四边形ABCD是矩形,
    ∴OA=OC=OB=OD,
    ∵OA=3,
    ∴BD=2OB=1.
    故答案为:1.
    本题主要考查了矩形的性质,平行四边形的性质等知识点的理解和掌握.
    11、x<﹣1
    【解析】
    观察函数图象得到当x<-1时,直线y=k1x+b1在直线y=k1x+b1的上方,于是可得到不等式k1x+b1>k1x+b1的解集.
    【详解】
    当x<-1时,k1x+b1>k1x+b1,
    所以不等式k1x+b1>k1x+b1的解集为x<-1.
    故答案为x<-1.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、1
    【解析】
    根据正六边形的一个内角为120°,可求出正六边形密铺时中间的正多边形的内角,继而可求出n的值.
    【详解】
    解:两个正六边形拼接,一个公共点处组成的角度为240°,
    故如果要密铺,则中间需要一个内角为120°的正多边形,
    而正六边形的内角为120°,所以中间的多边形为正六边形,
    故n=1.
    故答案为:1.
    此题考查了平面密铺的知识,解答本题的关键是求出在密铺条件下中间需要的正多边形的一个内角的度数,进而得到n的值,难度不大.
    13、12
    【解析】
    结合勾股定理和正方形的面积公式,得字母B所代表的正方形的面积等于其它两个正方形的面积差,又因为正方形的面积=a2开方即可求边长.
    【详解】
    字母B所代表的正方形的面积=169−25=144
    所以字母B所代表的正方形边长a=.
    故选12.
    本题考查了勾股定理及学生知识迁移的能力.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)
    【解析】
    (1)根据边长为5,高为4的菱形面积为20作图即可;
    (2)边长为和的矩形对角线AC长为,面积为24,据此作图即可.
    【详解】
    解:(1)如图1所示,菱形即为所求;
    (2)如图2所示,矩形即为所求.
    ∵,
    ∴矩形的周长为.
    故答案为:.
    本题考查的知识点是菱形的性质以及作图,根据题意计算得出菱形的边长和矩形的边长是解此题的关键.
    15、(1)结论:AE=CG.理由见解析;(2)结论不变,AE=CG.
    【解析】
    分析:(1)结论AE=CG.只要证明△ABE≌△CBG,即可解决问题.
    (2)结论不变,AE=CG.如图2中,连接BG、BE.先证明△BPE≌△BPG,再证明△ABE≌△CBG即可.
    详解:(1)结论:AE=CG.理由如下:
    如图1,

    ∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD,
    ∵四边形PEFG是菱形,∴BE=BG,∠EBD=∠GBD,∴∠ABE=∠CBG,
    在△ABE和△CBG中,
    ,∴△ABE≌△CBG,∴AE=CG.
    (2)结论不变,AE=CG.理由如下:
    如图2,连接BG、BE.

    ∵四边形PEFG是菱形,∴PE=PG,∠FPE=∠FPG,∴∠BPE=∠BPG,
    在△BPE和△BPG中,
    ,∴△BPE≌△BPG,∴BE=BG,∠PBE=∠PBG,
    ∵∠ABD=∠CBD,∴∠ABE=∠CBG,
    在△ABE和△CBG中,
    ,∴△ABE≌△CBG,∴AE=CG.
    点睛:本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.
    16、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    【解析】
    (1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,解方程即可;
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,又30x+45(7﹣x)≥275,求出x的最大值即可.
    【详解】
    (1)设租用一辆甲种客车的费用为x元,
    则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,
    解得x=300,
    答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,
    又30x+45(7﹣x)≥275,解得x≤,
    ∴x的最大值为2,
    ∵﹣100<0,∴x=2时,y的值最小,最小值为1.
    答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    本题考核知识点:一次函数的应用. 解题关键点:把问题转化为解一元一次方程或不等式问题.
    17、(1)0.25;(2)见解析;(3)90°;(4)375人
    【解析】
    (1)根据扇形图可知“科普书籍”出现的频率为1-其他的百分比-文艺的百分比-体育的百分比求解即可;
    (2)选取其他、文艺或体育任意条形图数据结合扇形百分比求出全体人数,再根据(1)科普的频数即可确定人数,据此补全图形即可;
    (3)根据喜欢“科普书籍”的所占圆心角度数=喜欢“科普书籍”的百分比×360°求解即可;
    (4)根据该校最喜欢“科普”书籍的学生数=该校学生数×喜欢“科普”的百分比求解即可.
    【详解】
    解:(1)“科普书籍”出现的频率=1-20%-15%-40%=25%=0.25,故答案为0.25;
    (2)调查的全体人数=人,
    所以喜欢科普书籍的人数=人,如图;
    (3)喜欢“科普书籍”的所占的圆心角度数=0.25×360°=90°
    (4)该校最喜欢“科普”书籍的学生约有0.25×1500=375人.
    本题考查的是统计相关知识,能够结合扇形图和条形图共解问题是解题的关键.
    18、(1)证明见解析;(2)1.
    【解析】
    (1)证Rt△ADE≌Rt△CBF(HL),得AD=BC,∠ADE=∠CBF,AD∥BC,故四边形ABCD是平行四边形;(2)过C作CH⊥BD于H,证△CBF是等腰直角三角形,得BF=BC=4,CH=BC=2,得BD=6,故四边形ABCD的面积=BD•CH.
    【详解】
    (1)证明:∵AE⊥AD,CF⊥BC,
    ∴∠DAE=∠BCF=90°,
    ∵BE=DF,
    ∴BE+EF=DF+EF,
    即BF=DE,
    在Rt△ADE与Rt△CBF中,

    ∴Rt△ADE≌Rt△CBF(HL),
    ∴AD=BC,∠ADE=∠CBF,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形;
    (2)解:过C作CH⊥BD于H,
    ∵∠CBD=45°,
    ∴△CBF是等腰直角三角形,
    ∴BF=BC=4,CH=BC=2,
    ∵E,F是BD的三等分点,
    ∴BD=6,
    ∴四边形ABCD的面积=BD•CH=1.
    熟记平行四边形的判定和性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、±1
    【解析】
    根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
    【详解】
    解:由题意得:,
    解得:x=7,
    则y=9,
    (xy-64)2=1,
    1的平方根为±1,
    故答案为:±1.
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    20、
    【解析】
    由矩形的性质可证明S△DFP=S△PBE,即可求解.
    【详解】
    解:作PM⊥AD于M,交BC于N.
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
    ∴S△DFP=S△PBE=×2×5=5,
    ∴S阴=5+5=10,
    故答案为:10.
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.
    21、3
    【解析】
    先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.
    【详解】
    因为,
    所以,
    因为6-的整数部分为x,小数部分为y,
    所以x=2, y=,
    所以(2x+)y=,
    故答案为:3.
    本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.
    22、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    23、1
    【解析】
    利用众数的定义求解.
    【详解】
    解:这组数据的众数为1.
    故答案为1.
    本题考查了众数:一组数据中出现次数最多的数据叫做众数.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)见解析;(2)y=-1;(3) .
    【解析】
    (1)当时,,为一次函数,可以画出其图象,当,,也为一次函数,同理可以画出其图象即可;
    (2)当时,代入,求解值即可;
    (3)时,分别代入两个表达式,求解即可.
    【详解】
    (1)图象如图所示:
    (2)当时,;
    (3)时,,解得:,
    ,,
    故.
    本题考查的是一次函数的性质,涉及了函数图象的画法、函数值的计算等,正确把握相关知识是解题的关键.
    25、 (1)y=x+1;(2)△ABC是等腰直角三角形;(3)存在,点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    【解析】
    (1)利用待定系数法,即可得到直线AD的解析式;
    (2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;
    (3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.
    【详解】
    解:(1)直线AD的解析式为y=kx+b,
    ∵直线AD经过点A(1,2),点D(0,1),
    ∴,
    解得,
    ∴直线AD的解析式为y=x+1;
    (2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,
    ∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),
    ∵点A(1,2),
    ∴AB=2,AC=2,BC=4,
    ∵AB2+AC2=16=BC2,
    ∴∠BAC=90°,
    ∴△ABC是等腰直角三角形;
    (3)存在,
    AC=2,S△BOD=×1×1=,
    ∵△ABC是等腰直角三角形,
    ∴∠CAE=90°,
    ∵S△ACE=AE×AC,4S△BOD=S△ACE,
    ∴4×=×AE×2,
    解得AE=,
    ①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,
    ∵AD=AE=,∠EDF=45°,
    ∴EF=DF=2,OF=2+1=3,
    ∴E(2,3);
    ②当点E在直线AC的左侧时,
    ∵AD=AE=,
    ∴点E与点D重合,即E(0,1),
    综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.
    本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    26、2.
    【解析】
    分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
    详解:(a+)÷
    =[+]•
    =•
    =•
    =,
    当a=1时,原式==2.
    点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年阜新市重点中学九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年阜新市重点中学九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年德阳市重点中学数学九年级第一学期开学考试试题【含答案】: 这是一份2024-2025学年德阳市重点中学数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年城郊中学数学九年级第一学期开学考试模拟试题【含答案】: 这是一份2024-2025学年城郊中学数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map