2024-2025学年辽宁省沈阳市第一四三中学数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
A.元B.元C.元D.元
2、(4分)下面式子从左边到右边的变形属于因式分解的是( ).
A.x2-x-2=x(x一1)-2B.
C.(x+1)(x—1)=x2 - 1D.
3、(4分)某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为
A.B.C.D.
4、(4分)如图,在正方形ABCD的边BC的延长线上取一点E,使CE=AC连接AE交CD于点F,则∠AFC等于( )
A.112.5°B.120°C.135°D.145°
5、(4分)某校团委为了解本校八年级500名学生平均每晚的睡眠时间,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校八年级500名学生平均每晚的睡眠时间;其中正确的是( )
A.①②B.①④C.②③D.②④
6、(4分)如图,在矩形ABCD中,AB=10, BC=5 .若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为( )
A.10B.8C.5D.6
7、(4分)下列函数中是一次函数的是
A.B.
C.D.
8、(4分)下列命题中,不正确的是( ).
A.一个四边形如果既是矩形又是菱形,那么它一定是正方形
B.有一个角是直角,且有一组邻边相等的平行四边形是正方形
C.有一组邻边相等的矩形是正方形
D.两条对角线垂直且相等的四边形是正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.
10、(4分)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为 .
11、(4分)一元二次方程的两根为,,若,则______.
12、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
13、(4分)如图,在矩形中,,,是边的中点,点是边上的一动点,将沿折叠,使得点落在处,连接,,当点落在矩形的对称轴上,则的值为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形AECF中,.CE、CF分别是△ABC的内,外角平分线.
(1)求证:四边形AECF是矩形.
(2)当△ABC满足什么条件时,四边形AECF是正方形?请说明理由.
15、(8分)计算:(2-)×
16、(8分)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点。
(1)求函数的图像上和谐点的坐标;
(2)若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围.
17、(10分)计算:()﹣().
18、(10分)如图,在平行四边形中,点、别在,上,且.
(1)如图①,求证:四边形是平行四边形;
(2)如图②,若,且.,求平行四边形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,中,,,,点D是AC上的任意一点,过点D作于点E,于点F,连接EF,则EF的最小值是_________.
20、(4分)如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
21、(4分)分解因式:2a3﹣8a=________.
22、(4分)如图,将一个智屏手机抽象成一个的矩形,其中,,然后将它围绕顶点逆时针旋转一周,旋转过程中、、、的对应点依次为、、、,则当为直角三角形时,若旋转角为,则的大小为______.
23、(4分)若代数式有意义,则实数的取值范围是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:
(1)求甲、乙两种空调每台进价各是多少万元?
(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?
25、(10分)如图,已知点在四边形的边上,设,,.
(1)试用向量、和表示向量,;
(2)在图中求作:.(不要求写出作法,只需写出结论即可)
26、(12分)在平面宜角坐标系xOy中,直线y=x+4与x轴,y轴交于点A,B.第一象限内有一点P(m,n),正实数m,n满足4m+3n=12
(1)连接AP,PO,△APO的面积能否达到7个平方单位?为什么?
(2)射线AP平分∠BAO时,求代数式5m+n的值;
(3)若点A′与点A关于y轴对称,点C在x轴上,且2∠CBO+∠PA′O=90°,小慧演算后发现△ACP的面积不可能达到7个平方单位.请分析并评价“小薏发现”.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.
2、B
【解析】
根据因式分解的意义求解即可.
【详解】
A、没把多项式转化成几个整式积的形式,故A不符合题意;
B、把多项式转化成几个整式积的形式,故B符合题意;
C、是整式的乘法,故C不符合题意;
D、是整式的乘法,故D不符合题意;
故选B.
本题考查了因式分解的意义,把多项式转化成几个整式积的形式.
3、C
【解析】
乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可.
【详解】
乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,
依题意得:,
故选C.
本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键
错因分析:中等题.选错的原因是:未能读懂题意导致不能列出正确的等量关系.
4、A
【解析】
根据正方形的性质及已知条件可求得∠E的度数,从而根据外角的性质可求得∠AFC的度数.
【详解】
∵四边形ABCD是正方形,CE=CA,
∴∠ACE=45°+90°=135°,∠E=22.5°,
∴∠AFC=90°+22.5°=112.5°.
故答案为A.
本题考查正方形的性质,解题的关键是掌握正方形的性质.
5、B
【解析】
根据问题特点,选用合适的调查方法.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.同时根据随机事件的定义,以及样本容量的定义来解决即可.
【详解】
解:①本次调查方式属于抽样调查,正确;
②每个学生的睡眠时间是个体,此结论错误;
③100名学生的睡眠时间是总体的一个样本,此结论错误;
④总体是该校八年级500名学生平均每晚的睡眠时间,正确.
故选:B.
本题考查总体,样本,样本的容量的概念,熟练掌握相关定义是解题关键.
6、B
【解析】
过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.
【详解】
解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,
AC=5,
AC边上的高为2,所以BE=4.
∵△ABC∽△EFB,
∴,即
EF=1.
故选B.
考点:轴对称-最短路线问题.
7、D
【解析】
根据形如k、b是常数的函数是一次函数即可解答.
【详解】
选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.
故选D.
本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
8、D
【解析】
试题分析:根据正方形的判定定理可得选项A正确;有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形,选项B正确;有一组邻边相等的矩形是正方形,选项C正确;两条对角线垂直平方且相等的四边形是正方形,选项D错误,故答案选D.
考点:正方形的判定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、640
【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.
【详解】
解:设这个零件的实际长是xcm,根据题意得:
,
解得:x=640,
则这个零件的实际长是640cm.
故答案为:640
此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.
10、(40﹣x)(30+3x)=3.
【解析】
试题分析:设每件童裝应降价x元,可列方程为:(40﹣x)(30+3x)=3.故答案为(40﹣x)(30+3x)=3.
考点:3.由实际问题抽象出一元二次方程;3.销售问题.
11、-7
【解析】
先用根与系数的关系,确定m、n的和与积,进一步确定a的值,然后将m代入,得到,最后再对变形即会完成解答.
【详解】
解:由得:m+n=-5,mn=a,即a=2
又m是方程的根,则有,
所以+(m+n)=-2-5=-7
故答案为-7.
本题主要考查了一元二次方程的解和多项式的变形,其中根据需要对多项式进行变形是解答本题的关键.
12、-1<x<1.
【解析】
先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
【详解】
解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
∴﹣4=﹣n﹣1,解得n=1,
∴P(1,﹣4),
又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
故答案为﹣1<x<1.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
13、2
【解析】
根据旋转的性质在三角形EHG中,利用30°角的特殊性得到∠EGH=30°,再利用对称性进行解题即可.
【详解】
解:如下图过点E作EH垂直对称轴与H,连接BG,
∵,,
∴BE=EG=1,EH=,
∴∠EGH=30°,
∴∠BEG=30°,
由旋转可知∠BEF=15°,BG⊥EF,
∴∠EBG=75°,∠GBF=∠BCG=15°,即
∴m=2
故答案是:2
本题考查了图形旋转的性质,中垂线的性质,直角三角形中30°的特殊性,熟悉30°角的特殊性是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)当满足时,四边形AECF是正方形,见解析.
【解析】
(1)求出∠ECF=90°=∠E=∠F,即可推出答案;
(2)∠ACB=90°,推出∠ACE=∠EAC=45°,AE=CE即可.
【详解】
(1)证明:∵CE、CF分别是的内、外角平分线,
,.
,即.
,
∴四边形AECF是矩形.
(2)解:当满足时,四边形AECF是正方形.
理由:
..
∵四边形AECF是矩形,∴四边形AECF是正方形.
故答案为:(1)见解析;(2)当满足时,四边形AECF是正方形,见解析.
本题考查对矩形和正方形的判定的理解和掌握,能求出四边形AECF是矩形是解题的关键.
15、.
【解析】
试题分析:原式利用乘法分配律计算即可得到结果.
试题解析:原式=2
=
=.
考点:二次根式的混合运算.
16、(1);(2)2≤m≤4
【解析】
(1)根据和谐点的横坐标与纵坐标相同,设和谐点的坐标为(a,a),代入可得关于a的方程,解方程可得答案.
(2)根据和谐点的概念令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32-4ac=0,即4ac=9,方程的根为=,从而求得a=-1,c=−,所以函数y=ax2+4x+c-=-x2+4x-3,根据函数解析式求得顶点坐标与纵坐标的交点坐标,根据y的取值,即可确定x的取值范围.
【详解】
(1)设和谐点的坐标为(a,a),则a=-2a+1
解得:a=,
∴函数的图像上和谐点的坐标为.
(2)令ax2+4x+c=x,即ax2+3x+c=0,
由题意,△=32﹣4ac=0,即4ac=9,
又方程的根为,
解得a=﹣1,c=.
故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,
如下图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).
由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,
∴2≤m≤4.
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质以及根的判别式等知识,正确理解和谐点的概念是解题的关键.
17、
【解析】
分析:根据二次根式的运算法则即可求出答案.
详解:原式=
=
点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
18、 (1)见解析;(2)16.
【解析】
(1)根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可;
(2)由勾股定理可求BC的长,即可求平行四边形ABCD的周长.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
四边形是平行四边形.
(2),.,
,
平行四边形的周长
本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.4
【解析】
连接BD,可证EF=BD,即将求EF最小值转化为求BD的最小值,根据“垂线段最短”可知时,BD取最小值,依据直角三角形面积求出BD即可.
【详解】
解:连接BD
四边形BEDF是矩形
当时,BD取最小值,
在中,,,根据勾股定理得AC=5,
所以EF的最小值等于BD的最小值为2.4.
故答案为2.4
本题主要考查了利用“垂线段最短”求线段的最小值,准确作出辅助线将求EF最小值转化为求BD最小值是解题的关键.求线段的最小值常用的理论依据为“两点之间线段最短”、“垂线段最短”.
20、4
【解析】
延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.
【详解】
解:延长F至G,使CG=AE,连接DG、EF,如图所示:
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,
∴∠DCG=90°,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴DE=DG,∠ADE=∠CDG,
∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,
∵∠EDF=45°,
∴∠GDF=45°,
在△EDF和△GDF中,,
∴△EDF≌△GDF(SAS),
∴EF=GF,
∵F是BC的中点,
∴BF=CF=3,
设AE=CG=x,则EF=GF=CF+CG=3+x,
在Rt△BEF中,由勾股定理得:,
解得:x=2,即AE=2,
∴BE=AB-AE=6-2=4.
此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.
21、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
22、或或
【解析】
根据题中得到∠ADE=30°,则∠DAE=60°;这是有两种情况,一种AE在AD的左侧,一种AE在AD的右侧;另外,当旋转180°,AE和AB共线时,∠EAD=90°,△ADE也是直角三角形.
【详解】
解:要使△ADE为直角三角形,由于AE=8,AD=16,即只需满足∠ADE=30°即可.
当∠DAE=30°,则∠DAE=60°
当AE在AD的右侧时,旋转了30°;
当AE在AD的左侧,即和BA的延长线的夹角为30°,即旋转了150°.
另外,当旋转到AE和AB延长线重合时,∠DAE=90°,三角形ADE也是直角三角形;
所以答案为:或或
本题考查了旋转和直角三角形的相关知识,其中对旋转过程中出现直角的讨论是解答本题的关键.
23、
【解析】
根据被开方数大于等于0列不等式求解即可.
【详解】
由题意得x-1≥0,
解得x≥1.
故答案为x≥1.
本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
二、解答题(本大题共3个小题,共30分)
24、(1)甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.
【解析】
(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;
(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.
【详解】
解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,
根据题意,得:,
解得:x=0.4,
经检验:x=0.4是原分式方程的解,
所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;
(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,
根据题意,得:0.4m+0.2(40﹣m)≤11.5,
解得:m≤17.5,
又m≥14,
∴14≤m≤17.5,
则整数m的值可以是14,15,16,17,
所以商场共有四种购进方案:
①购进甲种空调14台,乙种空调26台;
②购进甲种空调15台,乙种空调25台;
③购进甲种空调16台,乙种空调24台;
④购进甲种空调17台,乙种空调23台.
此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.
25、(1),;(2).
【解析】
(1)由,,,直接利用三角形法则求解,即可求得答案;
(2)由三角形法则可得: ,继而可求得答案.
【详解】
解:(1)∵,,,
∴ , ;
(2),如图:
此题考查了平面向量的知识.注意掌握三角形法则的应用.
26、(1)不能;(2)2;(3)见解析.
【解析】
(1)利用一次函数图象上点的坐标特征可求出点A的坐标,由△APO的面积等于7个平方单位可求出n值,代入4m+3n=12中可求出m值为负,由此可得出△APO的面积不能达到7个平方单位;
(2)设AP与y轴交于点E,过点E作EF⊥AB于点F,利用面积法及角平分线的性质可求出点E的坐标,由点A,E的坐标,利用待定系数法可求出直线AP的解析式,由m,n满足4m+3n=12可得出直线BP的解析式,联立直线AP,BP的解析式成方程组,通过解方程组可求出m,n的值,再将其代入1m+n中即可得出结论;
(3)当点C在x轴正半轴时,由2∠CBO+∠PA′O=20°可得出BC平分∠OBA′,同(2)可求出C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值大于7可得出:存在点P,使得△ACP的面积等于7个平方单位;当点C在x轴正半轴时,利用对称可得出点C的坐标,进而可求出AC的长,利用三角形的面积公式可求出△ACB的面积,由该值小于7可得出:此种情况下,△ACP的面积不可能达到7个平方单位.综上,此题得解.
【详解】
(1)△APO的面积不能达到7个平方单位,理由如下:
当y=0时,x+4=0,解得:x=-3,
∴点A的坐标为(-3,0).
∴S△APO=OA•n=7,即n=7,
∴n=.
又∵4m+3n=12,
∴m=-2,这与m为正实数矛盾,
∴△APO的面积不能达到7个平方单位.如图1,
(2)设AP与y轴交于点E,过点E作EF⊥AB于点F,如图2所示.
当x=0时,y=x+4=4,
∴点B的坐标为(0,4),
∴AB==1.
∵AP平分∠BAO,
∴EO=EF.
∵S△ABE=BE•OA=AB•EF,S△AOE=EO•OA,
∴,即,
∴EO=,
∴点E的坐标为(0,).
设直线AP的解析式为y=kx+b(k≠0),
将A(-3,0),E(0,)代入y=kx+b,得:
,解得:,
∴直线AP的解析式为y=x+.
∵点P的坐标为(m,n),m,n满足4m+3n=12,
∴点P在直线y=-x+4上.
联立直线AP,BP的解析式成方程组,得:
,
解得:,
∴m=,n=,
∴1m+n=2.
(3)“小薏发现”不对,理由如下:
依照题意,画出图形,如图3所示.
∵2∠CBO+∠PA′O=20°,∠OBA′+∠PA′O=20°,
∴∠OBA′=2∠CBO.
∵点A′与点A关于y轴对称,
∴点A′的坐标为(3,0),点P在线段BA′上.
当点C在x轴正半轴时,BC平分∠OBA′,
同(2)可得出:,即,
∴OC=,
∴点C的坐标为(,0),
∴AC=.
∵S△ACB=AC•OB=××4=>7,
∴不存在点P,使得△ACP的面积等于7个平方单位;
当点C在x轴负半轴时,点C的坐标为(-,0),
∴AC=.
∵S△ACB=AC•OB=××4=<7,
∴此种情况下,△ACP的面积不可能达到7个平方单位.
综上所述:“小薏发现”不正确.
本题考查了一次函数图象上点的坐标特征、三角形的面积、待定系数法求一次函数解析式、三角形的面积、角平分线的性质以及角的计算,解题的关键是:(1)利用三角形的面积公式结合△APO的面积等于7个平方单位,求出n值;(2)联立两直线解析式成方程组,通过解方程组求出交点坐标;(3)分点C在x轴正半轴及点C在x轴负半轴两种情况,分析“小薏发现”是否正确.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市名校数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年辽宁省沈阳市和平区第一二六中学数学九上开学综合测试试题【含答案】: 这是一份2024-2025学年辽宁省沈阳市和平区第一二六中学数学九上开学综合测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省南京一中学数学九上开学教学质量检测试题【含答案】: 这是一份2024-2025学年江苏省南京一中学数学九上开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,九月份共生产零件万个,设八,填空题,解答题等内容,欢迎下载使用。