|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】01
    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】02
    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】

    展开
    这是一份2024-2025学年江苏省南通市新桥中学九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是( )
    A.24B.30C.40D.48
    2、(4分)如图,点在双曲线上,点在双曲线,轴,分别过点、向轴作垂线,垂足分别为、.若矩形的面积是,则的值为( )
    A.B.C.D.
    3、(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形( )
    A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF
    4、(4分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为( )
    A.B.
    C.D.
    5、(4分)一元二次方程 2x(x-1)=3(x-1)的解是( )
    A.x=B.x=1C.x1=或 x2=1D.x1=且 x2=1
    6、(4分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,以点为圆心,长为半径画弧,交轴的负半轴于点,则点的坐标为( )
    A.B.C.D.
    7、(4分)下列图形中是中心对称图形,但不是轴对称图形的是( )
    A.B.C.D.
    8、(4分)某中学在“一元钱捐助”献爱心捐款活动中,六个年级捐款如下(单位:元):888, 868,688,886,868,668 那么这组数据的众数、中位数、平均数分别为( )
    A.868,868,868B.868,868,811C.886,868,866D.868,886,811
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)用科学记数法表示:__________________.
    10、(4分)已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为 .
    11、(4分)若是一元二次方程的两个实数根,则=__________.
    12、(4分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)
    13、(4分)当x=________时,分式的值为零.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数与的图象上,对角线于点,轴于点.
    (1)若,试求的值;
    (2)当,点是线段的中点时,试判断四边形的形状,并说明理由.
    (3)直线与轴相交于点.当四边形为正方形时,请求出的长度.
    15、(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.
    (1)求证:DE=CF;
    (2)求EF的长.
    16、(8分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
    根据以上信息,解答下列问题:
    (1)请补全频数分布直方图;
    (2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
    (3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
    17、(10分)从1,1...,100这100个数中任意选取一个数,求:
    (1)取到的是3的倍数的数概率P(A)
    (1)取到的个位数字与十位数字之和为7的两位数的概率P(B)
    18、(10分)解不等式组:,并将解集在数轴上表示出来,且写出它的整数解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    20、(4分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的_____(从“众数、方差、平均数、中位数”中填答案)
    21、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
    22、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
    23、(4分)已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.
    25、(10分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.
    (1)参加这次夏令营活动的初中生共有多少人?
    (2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?
    26、(12分)如图,四边形中,,,.
    (1)求证:;
    (2)若,,,分别是,,,的中点,求证:线段与线段互相平分.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据菱形的面积等于对角线乘积的一半即可解决问题.
    【详解】
    ∵四边形ABCD是菱形,AC=6,BD=8,
    ∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.
    故选A.
    此题考查菱形的性质,解题关键在于计算公式.
    2、A
    【解析】
    首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.
    【详解】
    过点A作AE⊥y轴于点E,
    ∵点A在双曲线上,
    ∴矩形EODA的面积为:4,
    ∵矩形ABCD的面积是8,
    ∴矩形EOCB的面积为:4+8=1,
    则k的值为:xy=k=1.
    故选A.
    此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.
    3、B
    【解析】
    由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.
    【详解】
    由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
    ∴△CDF≌△CBF,
    ∴BF=FD,
    同理,BE=ED,
    ∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
    故选B.
    考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.
    4、A
    【解析】
    分析:根据定义可将函数进行化简.
    详解:当﹣1≤x<0,[x]=﹣1,y=x+1
    当0≤x<1时,[x]=0,y=x
    当1≤x<2时,[x]=1,y=x﹣1
    ……
    故选A.
    点睛:本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.
    5、D
    【解析】
    先移项,再用因式分解法解一元二次方程即可.
    【详解】
    解:移项,得2x(x-1)-3(x-1)=0,
    于是(x-1) (2x-3)=0,
    ∴x-1=0或2x-3=0,
    ∴,.
    故选D.
    本题考查了一元二次方程的解法,对本题而言,用分解因式法解一元二次方程要比其它方法简单,但要注意的是,两边切不可同时除以(x-1),得2x=3,从而造成方程丢根.
    6、B
    【解析】
    先根据勾股定理求出AB的长,由于AB=AC,可求出AC的长,再根据点C在x轴的负半轴上即可得出结论.
    【详解】
    解:∵点A的坐标为(4,0),点的坐标为(0,3),
    ∴OA=4,OB=3,
    ∴AB==5,
    ∵以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,
    ∴AC=5,
    ∴OC=1,
    ∴点C的坐标为(-1,0).
    故选B.
    本题考查的是勾股定理在直角坐标系中的运用,根据题意利用勾股定理求出AC的长是解答此题的关键.
    7、D
    【解析】
    将一个图形沿着一条直线翻折后两侧能够完全重合,这样的图形是轴对称图形;将一个图形绕着一个点旋转180°后能与自身完全重合,这样的图形是中心对称图形,根据定义依次判断即可得到答案.
    【详解】
    A、是轴对称图形,是中心对称图形;
    B、是轴对称图形,是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形,
    故选:D.
    此题考查轴对称图形的定义,中心对称图形的定义,熟记定义并掌握图形的特点是解题的关键.
    8、B
    【解析】
    根据众数的定义即可得出众数,根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的中位数,根据平均数公式即可得出平均数.
    【详解】
    解:由888, 868,688,886,868,668可知众数为:868
    将888, 868,688,886,868,668进行排序668,688, 868,868,886,888,可知中位数是:
    平均数为:
    故答案为:868,868,811
    故选:B
    本题考查了众数、平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    故答案为.
    此题考查科学记数法,解题关键在于掌握一般形式.
    10、y=-x+1
    【解析】
    由函数的图象与直线y=-x+1平行,可得斜率,将点(8,2)代入即可人求解.
    解:设所求一次函数的解析式为 y=kx+b,
    ∵函数的图象与直线y=-x+1平行,
    ∴k=-1,
    又过点(8,2),有2=-1×8+b,
    解得b=1,
    ∴一次函数的解析式为y=-x+1,
    故答案为y=-x+1.
    11、-1
    【解析】
    根据根与系数的关系即可求出答案.
    【详解】
    由根与系数的关系可知:x1+x2=﹣1,x1x2=﹣2,
    ∴x1+x2+x1x2=﹣1
    故答案为﹣1.
    本题考查了根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.
    12、①②④.
    【解析】
    利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.
    【详解】
    解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,
    将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
    ∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
    ∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;
    在Rt△ABF中,AF===8,
    ∴DF=AD﹣AF=10﹣8=2,
    设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
    在Rt△GFH中,
    ∵GH2+HF2=GF2,
    ∴x2+42=(8﹣x)2,解得x=3,
    ∴GF=5,
    ∴AG+DF=FG=5,所以④正确;
    ∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
    ∴∠BFE=∠C=90°,
    ∴∠EFD+∠AFB=90°,
    而∠AFB+∠ABF=90°,
    ∴∠ABF=∠EFD,
    ∴△ABF∽△DFE,
    ∴=,
    ∴===,
    而==2,
    ∴≠,
    ∴△DEF与△ABG不相似;所以③错误.
    ∵S△ABG=×6×3=9,S△GHF=×3×4=6,
    ∴S△ABG=S△FGH,所以②正确.
    故答案是:①②④.
    本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
    13、3
    【解析】
    根据分式值为0的条件:分子为0,分母不为0,即可得答案.
    【详解】
    ∵分式的值为零,
    ∴x-3=0,x+5≠0,
    解得:x=3,
    故答案为:3
    本题考查分式值为0的条件,要使分式值为0,则分子为0,分母不为0;熟练掌握分式值为0的条件是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)1;(2)(2)四边形ABCD为菱形,理由见解析;(3)
    【解析】
    (1)由点N的坐标及CN的长度可得出点C的坐标,再利用反比例函数图象上点的坐标特征可求出点n的值;
    (2)利用反比例函数图象上点的坐标特征可得出点A,C的坐标,结合点P为线段AC的中点可得出点P的坐标,利用反比例函数图象上点的坐标特征可得出点B,D的坐标,结合点P的坐标可得出BP=DP,利用“对角线互相垂直平分的四边形为菱形”可证出四边形ABCD为菱形;
    (3)利用正方形的性质可得出AC=BD且点P为线段AC及BD的中点,利用反比例函数图象上点的坐标特征可求出点A,C,B,D的坐标,结合AC=BD可得出关于n的方程,解之即可得出结论.
    【详解】
    (1)∵点N的坐标为(2,0),CN⊥x轴,且,
    ∴点C的坐标为(2,).
    ∵点C在反比例函数的图象上,
    ∴n=2×=1.
    (2)四边形ABCD为菱形,理由如下:
    当n=2时,.
    当x=2时,,
    ∴点C的坐标为(2,1),点A的坐标为(2,4).
    ∵点P是线段AC的中点,
    ∴点P的坐标为(2,).
    当y=时,,
    解得:,
    ∴点B的坐标为,点D的坐标为,
    ∴,
    ∴BP=DP.
    又∵AP=CP,AC⊥BD,
    ∴四边形ABCD为菱形.
    (3)∵四边形ABCD为正方形,
    ∴AC=BD,且点P为线段AC及BD的中点.
    当x=2时,y1=n,y2=2n,
    ∴点A的坐标为(2,2n),点C的坐标为(2,n),AC=n,
    ∴点P的坐标为.
    同理,点B的坐标为,点D的坐标为,.
    ∵AC=BD,
    ∴,
    ∴,
    ∴点A的坐标为,点B的坐标为.
    设直线AB的解析式为y=kx+b(k≠0),
    将A,B代入y=kx+b,得:,
    解得:,
    ∴直线AB的解析式为y=x+.
    当x=0时,y=x+,
    ∴点E的坐标为(0,),
    ∴当四边形ABCD为正方形时,OE的长度为.
    本题考查了反比例函数图象上点的坐标特征、菱形的判定以及正方形的性质,解题的关键是:(1)根据点C的坐标,利用反比例函数图象上点的坐标特征求出n值;(2)利用“对角线互相垂直平分的四边形为菱形”,证出四边形ABCD为菱形;(3)利用正方形的性质及反比例函数图象上点的坐标特征,找出关于n的方程.
    15、见解析;
    【解析】
    试题分析:(1)直接利用三角形中位线定理得出DEBC,进而得出DE=FC;
    (2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长
    试题解析:(1)证明:∵D、E分别为AB、AC的中点, ∴DEBC,
    ∵延长BC至点F,使CF=BC, ∴DEFC, 即DE=CF;
    (2)解:∵DEFC, ∴四边形DEFC是平行四边形, ∴DC=EF,
    ∵D为AB的中点,等边△ABC的边长是2, ∴AD=BD=1,CD⊥AB,BC=2, ∴DC=EF=.
    考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质
    16、(1)见解析;(2)8;(3)80分
    【解析】
    (1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;
    (2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;
    (3)利用总人数乘以一等奖的人数,据此即可判断.
    【详解】
    解:(1)200﹣(35+40+70+10)=45,如下图:
    (2)设抽了x人,则,解得x=8;
    (3)依题意知获一等奖的人数为200×25%=50(人).
    则一等奖的分数线是80分.
    17、(1)33%;(1)
    【解析】
    (1)先例举出1,1...,100这100个数字中3的倍数,再利用简单概率的概率公式计算即可得到答案。(1)例举出符合条件的两位数,利用简单随机事件的概率公式解题即可.
    【详解】
    (1)因为从1,1...,100这100个数字中3的倍数有
    个,所以取到的是3的倍数的数概率P(A)33%.
    (1)两位数一共90个,其中只有16、15、34、43、51、61,70满足条件,
    则P(B).
    本题考查的是简单问题中的随机事件的概率的计算,掌握计算公式是解题关键.
    18、不等式组的解集为;整数解为.
    【解析】
    分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来,继而可得不等式组的解集.
    【详解】
    解:解不等式得:,
    解不等式得:,
    解集在数轴上表示为:
    不等式组的解集为;
    ∴整数解为.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    20、中位数
    【解析】
    9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故答案为:中位数.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    21、60
    【解析】
    试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
    考点:线段垂直平分线的性质
    22、1
    【解析】
    先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
    【详解】
    解:在Rt△ABC中,∵∠ABC=30°,
    ∴AC=AB=5,
    ∵△ABC沿CB向右平移得到△DEF,
    ∴AD=BE,ADBE,
    ∴四边形ABED为平行四边形,
    ∵四边形ABED的面积等于20,
    ∴AC•BE=20,即5BE=20,
    ∴BE=1,即平移距离等于1.
    故答案为:1.
    本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
    23、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2) .
    【解析】
    (1)先用平方差公式分解,再用完全平方公式二次分解;
    (2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.
    【详解】
    (1)(x²+4)²-16x²
    =(x²+4+4x)(x²+4-4x)
    =(x+2)²(x-2)²;
    (2)原式=

    由题意,x≠±2且x≠1,
    ∴当x=-1时,原式= .
    本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.
    25、(1)80人;(2)11.5元
    【解析】
    (1)参加这次夏令营活动的初中生所占比例是:1-10%-20%-30%=40%,就可以求出人数.
    (2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出答案.
    【详解】
    (1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;
    (2)小学生、高中生和大学生的人数分别为:
    200×20%=40,200×30%=60,200×10%=20,
    所以平均每人捐款为:(元).
    本题考查了扇形统计图、加权平均数等知识.从扇形统计图中得出初中生所占比例是解题的关键.
    26、(1)见解析;(2)见解析
    【解析】
    (1)过点D作DM∥AC交BC的延长线于点M,由平行四边形的性质易得AC=DM=DB,∠DBC=∠M=∠ACB,由全等三角形判定定理及性质得出结论;
    (2)连接EH,FH,FG,EG,E,F,G,H分别是AD,BC,DB,AC的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得□HFGE为菱形,易得EF与GH互相垂直平分.
    【详解】
    解:(1)证明:(1)过点D作DM∥AC交BC的延长线于点M,如图1,
    ∵AD∥CB,
    ∴四边形ADMC为平行四边形,
    ∴AC=DM=DB,∠DBC=∠M=∠ACB,
    在△ACB和△DBC中,

    ∴△ACB≌△DBC(SAS),
    ∴AB=DC;
    (2)连接EH,FH,FG,EG,如图2,
    ∵E,F,G,H分别是AD,BC,DB,AC的中点,
    ∴GE∥AB,且GE=AB,HF∥AB,且HF=AB,
    ∴GE∥HF,GE=HF,
    ∴四边形HFGE为平行四边形,
    由(1)知,AB=DC,
    ∴GE=HE,
    ∴□HFGE为菱形,
    ∴EF与GH互相垂直平分.
    本题主要考查了平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解答此题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年江苏省南通市如东县数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省南通市如东县数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南通市启秀中学数学九年级第一学期开学经典试题【含答案】: 这是一份2024-2025学年江苏省南通市启秀中学数学九年级第一学期开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省南通市部分学校九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024-2025学年江苏省南通市部分学校九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map