![2024-2025学年江苏省海安市十学校九年级数学第一学期开学学业水平测试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16181842/0-1726976719170/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省海安市十学校九年级数学第一学期开学学业水平测试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16181842/0-1726976719249/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年江苏省海安市十学校九年级数学第一学期开学学业水平测试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16181842/0-1726976719261/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年江苏省海安市十学校九年级数学第一学期开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某种材料的厚度是,0.0000034这个数用科学记数法表示为( )
A.B.C.D.
2、(4分)点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)若平行四边形的两个内角的度数之比为1:5,则其中较小的内角是( )
A.B.C.D.
4、(4分)如图,平行四边形ABCD中,∠B=60°,AB⊥AC,AC的垂直平分线交AD于点E,△CDE的周长是15,则平行四边形ABCD的面积为( )
A.B.40C.50D.
5、(4分)解关于x的方程产生增根,则常数m的值等于 ( )
A.-2B.-1C.1D.2
6、(4分)在中,、分别是、边的中点,若,则的长是( )
A.9B.5C.6D.4
7、(4分)解一元二次方程x2+4x-1=0,配方正确的是( )
A.B.C.D.
8、(4分)如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A.△是等腰三角形,
B.折叠后∠ABE和∠CBD一定相等
C.折叠后得到的图形是轴对称图形
D.△EBA和△EDC一定是全等三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,函数和的图象交于点,则不等式的解集是_____.
10、(4分)在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、…,、、…在直线上,点、、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、..,则的值为________.
11、(4分)在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,, 的大小关系是 .(用“<”号连接)
12、(4分)Rt△ABC与直线l:y=﹣x﹣3同在如图所示的直角坐标系中,∠ABC=90°,AC=2,A(1,0),B(3,0),将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积等于_____.
13、(4分)某物体对地面的压强随物体与地面的接触面积之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为,那么该物体对地面的压强是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
(1)本次调查共选取 名居民;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?
15、(8分)如图,小刚想知道学校旗杆的高度,他发现旗杆顶端A处的绳子垂到地面B处后还多2米当他把绳子拉直并使下端刚好接触到地面C处,发现绳子下端到旗杆下端的距离为6米,请你帮小刚求出旗杆的高度AB长.
16、(8分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
(1)如图(1),当时,,,之间的数量关系为___________.
(2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
(3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
17、(10分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度 y(℃)与时间x(min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?
18、(10分)有一个等腰三角形的周长为。
(1)写出底边关于腰长的函数关系式;
(2)写出自变量的取值范围。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.
20、(4分)一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
21、(4分)若分解因式可分解为,则=______。
22、(4分)已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________
23、(4分)如图所示,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,如果矩形的面积为1,那么阴影部分的面积是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)当今,青少年用电脑手机过多,视力水平下降已引起了全社会的关注,某校为了解八年级1000名学生的视力情况,从中抽查了150名学生的视力情况,通过数据处理,得到如下的频数分布表.解答下列问题:
(1)分别指出参加抽测学生的视力的众数、中位数所在的范围;
(2)若视力为4.85以上(含4.85)为正常,试估计该校八年级学生视力正常的人数约为多少?
(3)根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数相应组中的权.请你估计该校八年级学生的平均视力是多少?
25、(10分)如图1,在平面直角坐标系中点,,以为顶点在第一象限内作正方形.反比例函数、分别经过、两点(1)如图2,过、两点分别作、轴的平行线得矩形,现将点沿的图象向右运动,矩形随之平移;
①试求当点落在的图象上时点的坐标_____________.
②设平移后点的横坐标为,矩形的边与,的图象均无公共点,请直接写出的取值范围____________.
26、(12分)如图,在平行四边形ABCD中,过AC中点O作直线,分别交AD、BC于点E、F.
求证:△AOE≌△COF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000034=3.4×10−1.
故选:B.
此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
2、C
【解析】
由第二象限纵坐标大于零得出关于m的不等式,解之可得.
【详解】
解:由题意知m+1>0,
解得m>﹣1,
故选:C.
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
3、A
【解析】
根据平行四边形的性质即可求解.
【详解】
设较小的角为x,则另一个角为5x,
∵平行四边形的对角互补,
∴x+5x=180°,
解得x=30° ,
故选A
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角互补.
4、D
【解析】
首先证明AD+CD=15,再证明AD=2CD,推出CD=5,AD=10,利用勾股定理求出AC即可解決问题;
【详解】
∵点E在AC的垂直平分线上
∴EA=EC
∴△CDB的周长=CD+DE+EC=CD+DE+EA=CD+DA=15
∵四边形ABCD是平行四边形
∴∠B=∠D=60°,AB∥CD
∵AB⊥AC,
∴AC⊥CD
∴∠ACD=90°
∴∠CAD=30°
∴AD=2CD
∴CD=5,AD=10
∴AC=
S =2S△ADC=2×5×5=25
故选D
此题考查平行四边形的性质和勾股定理,解题关键在于先证明AD+CD=15,再证明AD=2CD
5、A
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
解;方程两边都乘(x−1),得
x−3=m,
∵方程有增根,
∴最简公分母x−1=0,即增根是x=1,
把x=1代入整式方程,得m=−2.
故选A.
本题考查了分式方程的增根,解题的关键是求出增根进而求出未知字母的值.
6、C
【解析】
根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.
【详解】
解:∵D、E分别是BC、AC边的中点,
∴DE是△CAB的中位线,
∴AB=2DE=6.
故选C.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记并灵活应用定理是解题的关键.
7、C
【解析】
根据一元二次方程的配方法即可求出答案.
【详解】
∵x2+4x-1=0,
∴x2+4x+4=5,
∴(x+2)2=5,
故选:C.
此题考查一元二次方程,解题关键是熟练运用一元二次方程的解法.
8、B
【解析】
根据长方形的性质得到∠BAE=∠DCE=90°,AB=CD,再由对顶角相等可得∠AEB=∠CED,推出△EBA≌△EDC,根据等腰三角形的性质即可得到结论,依此可得A、C、D正确;无法判断∠ABE和∠CBD是否相等.
【详解】
∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
本题考查全等三角形的判定与性质以及等腰三角形的判定和性质,熟练掌握折叠的性质得出全等条件是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
观察图象,写出直线在直线的下方所对应的自变量的范围即可.
【详解】
解:观察图象得:当时,,
即不等式的解集为.
故答案为:.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的解集.
10、
【解析】
根据=,=,找出规律从而得解.
【详解】
解:
∵直线,当x=0时,y=1,当y=0时,x=﹣1,
∴OA1=1,OD=1,
∴∠ODA1=45°,
∴∠A2A1B1=45°,
∴A2B1=A1B1=1,
∴=,
∵A2B1=A1B1=1,
∴A2C1=2=,
∴=,
同理得:A3C2=4=,…,=,
∴=,
故答案为.
11、
【解析】
根据反比例函数图象上点的坐标特征解答即可;
【详解】
解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,
∵点A(,)在反比例函数图象上,<0,
∴>0,
∵B(,)、C(,)在反比例函数图象上,0<<,
∴,
∴,
故答案为:.
本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.
12、1
【解析】
根据题意作出图形,利用勾股定理求出BC,求出C’的坐标,再根据矩形的面积公式即可求解.
【详解】
解:∵∠ABC=90°,AC=2,A(1,0),B(3,0),
∴AB=2,
∴BC==4,
∴点C的坐标为(3,4),
当y=4时,4=﹣x﹣3,得x=﹣7,
∴C′(﹣7,4),
∴CC′=10,
∴当点C落在直线l上时,线段AC扫过的面积为:10×4=1,
故答案为:1.
此题主要考查平移的性质,解题的关键是熟知一次函数的图像与性质.
13、500
【解析】
首先通过反比例函数的定义计算出比例系数k的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值
【详解】
根据图象可得
当S=0.24时,P= =500,即压强是500Pa.
此题考查反比例函数的应用,列方程是解题关键
三、解答题(本大题共5个小题,共48分)
14、(1)80人;(2)见解析;(3)1120人.
【解析】
(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;
(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;
(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.
【详解】
(1)本次调查的居民人数=56÷70%=80人;
(2)为“C”的人数为:80﹣56﹣12﹣4=8人,
“C”所对扇形的圆心角的度数为:×360°=36°
补全统计图如图;
(3)该区从不闯红灯的人数=1600×70%=1120人.
15、旗杆的高度为8米
【解析】
因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为米,根据勾股定理即可求得旗杆的高度.
【详解】
设旗杆的高度为x米,则绳子的长度为米,
根据勾股定理可得:,
解得,.
答:旗杆的高度为8米.
此题考查了学生利用勾股定理解决实际问题的能力,解答本题的关键是用未知数表示出三边长度,利用勾股定理解答.
16、(1);(2)成立;证明见解析;(3).
【解析】
(1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG,证明△AFE≌△AFG可得EF=FG,从而得出答案.
(2)将△ABE绕点A逆时针旋转得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证明△AEF≌△AHF得.
(3)将△AEC绕点A顺时针旋转90°,得到△,连接,据此知,,∠C=∠,,由知,即,从而得到,易证得,根据可得答案.
【详解】
(1)延长到,使,连接,
在正方形中,
,
在和中,
,
,,
,
,
在和中,
,
,
,
.
(2)延长交点,使,连接,
,
,,
,,
,
,
.
(3)将绕点旋转至,连接,
,
,
,,
,
,
设,
,,
,
,
.
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
17、(1)当加热烧水,函数关系式为y=10x+20(0≤x≤8);
当停止加热,得y与x的函数关系式 为(1)y=100(8<x≤9);y=(9<x≤45);
(2)从烧水开到泡茶需要等待3.25分钟.
【解析】
(1)将D点的坐标代入反比例函数的一般形式利用待定系数法确定反比例函数的解析式,然后求得点C和点B的坐标,从而用待定系数法确定一次函数的解析式;
(2)将y=80代入反比例函数的解析式,从而求得答案.
【详解】
(1)停止加热时,设y= ,
由题意得:50=
解得:k=900,
∴y=,
当y=100时,解得:x=9,
∴C点坐标为(9,100),
∴B点坐标为(8,100),
当加热烧水时,设y=ax+20,
由题意得:100=8a+20,
解得:a=10,
∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);
当停止加热,得y与x的函数关系式 为(1)y=100(8<x≤9);y=(9<x≤45);
(2)把y=80代入y=,得x=11.25,
因此从烧水开到泡茶需要等待3.25分钟.
考点:1、待定系数法;2、反比例函数的应用
18、(1); (2)
【解析】
(1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.
(2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.
【详解】
(1)∵等腰三角形的两腰相等,周长为30,
∴2x+y=30,
∴底边长y与腰长x的函数关系式为:y=-2x+30;
(2)∵两边之和大于第三边,
∴2x>y,
∴x>,
∵y>0,
∴x<1,
x的取值范围是:7.5<x<1.
本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥2
【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.
【详解】
解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.
本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.
20、
【解析】
由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.
【详解】
解:由图知,抛物线的顶点坐标为(4,3),
故设抛物线解析式为,
将点(0,)代入,得:,
解得,
则抛物线解析式为,
故答案为:.
本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
21、-7
【解析】
将(x+3)(x+n)的形式转化为多项式,通过对比得出m、n的值,即可计算得出m+n的结果.
【详解】
(x+3)(x+n)=+(3+n)x+3n,
对比+mx-15,
得出:3n=﹣15,m=3+n,
则:n=﹣5,m=﹣2.
所以m+n=﹣2﹣5=﹣7.
本题考查了因式分解,解题关键在于通过对比两个多项式,得出m、n的值.
22、12-
【解析】
先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.
【详解】
解:∵3<<4,
∴8<5+<9,1<5-<2,
∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,
∴a+b=8+4-=12-,
故答案为12-.
本题主要考查了无理数的估算,解题关键是确定无理数的范围.
23、
【解析】
试题分析:阴影面积是矩形ABCD的.用角边角证△EOB≌△DOF,图中阴影面积其实就是△AOB的面积;因为矩形对角线相等且平分,所以很容易得出△AOB面积是矩形面积的3/3.
考点:3.矩形性质;3.三角形全等.
二、解答题(本大题共3个小题,共30分)
24、(1)众数在4.85≤x<5.15的范围内,中位数在4.85≤x<5.15的范围内;(2)八年级视力正常的学生约有600人;(3)八年级1000名学生平均视力为4.1.
【解析】
(1)根据众数和中位数的定义,就是出现次数最多的数和中间的数(中间两数的平均数),据此即可判断;
(2)利用总人数1000乘以对应的比例即可求解;
(3)根据用样本估计总体解答即可.
【详解】
(1)众 数 在4.85≤x<5.15的范围内,
中位数在4.85≤x<5.15的范围内;
(2)依题意,八年级视力正常的学生约有人;
(3)依题意,抽样调查150名学生的平均视力为
,
由于可以用样本估计总体,
因此得到八年级1000名学生平均视力为4.1.
本题考查读频数分布表的能力和利用统计图表获取信息的能力;利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题.
25、
【解析】
(1)如图1中,作DM⊥x轴于M.利用全等三角形的性质求出点D坐标,点C坐标,得到k1 ,k2的值,设平移后点D坐标为(m,),则E(m−2,),由题意:(m−2)•=3,解方程即可;
(2)设平移后点D坐标为(a,),则C(a−2,+1),当点C在y=上时,(a−2)(+1)=6,解得a=1+或1−(舍弃),观察图象可得结论;
【详解】
解:(1)如图1中,作DM⊥x轴于M.
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵∠AOB=∠AMD=90°,
∴∠OAB+∠OBA=90°,∠OAB+∠DAM=90°,
∴∠ABO=∠DAM,
∴△OAB≌△MDA(AAS),
∴AM=OB=1,DM=OA=2,
∴D(3,2),
∵点D在上,
∴k2=6,即,
同法可得C(1,3),
∵点C在上,
∴k1=3,即,
设平移后点D坐标为(m,),则E(m−2,),
由题意:(m−2)•=3,
解得m=4,
∴D(4,);
(2)设平移后点D坐标为(a,),则C(a−2,+1),
当点C在y=上时,(a−2)(+1)=6,
解得a=1+或1−(舍弃),
观察图象可知:矩形的边CE与,的图象均无公共点,
则a的取值范围为:4<a<1+.
本题考查反比例函数综合题、正方形的性质、全等三角形的判定和性质、待定系数法等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
26、见详解.
【解析】
根据平行四边形的性质可知:OA=OC,∠AEO=∠OFC,∠EAO=∠OCF,所以△AOE≌△COF
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC
∴∠EAO=∠FCO
又∵∠AOE和∠COF是对顶角,
∴∠AOE=∠COF
∵O是AC的中点,
∴OA=OC
在△AOE和△COF中,
∴△AOE≌△COF
题号
一
二
三
四
五
总分
得分
视力范围分组
组中值
频数
3.95≤x<4.25
4.1
20
4.25≤x<4.55
4.4
10
4.55≤x<4.85
4.7
30
4.85≤x<5.15
5.0
60
5.15≤x<5.45
5.3
30
合计
150
2024-2025学年河南省新乡市清华园学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年河南省新乡市清华园学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限,则k能取的最大整数为,解答题等内容,欢迎下载使用。
2024-2025学年广东惠城区数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东惠城区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省建阳外国语学校九年级数学第一学期开学学业水平测试试题【含答案】: 这是一份2024-2025学年福建省建阳外国语学校九年级数学第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。