河北省邯郸市馆陶县2025届数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算÷的结果是( )
A.B.C.D.
2、(4分)有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )
A.中位数B.平均数C.众数D.方差
3、(4分)下列从左到右的变形,属于因式分解的是( )
A.B.
C.D.
4、(4分)下列事件中,属于必然事件的是()
A.经过路口,恰好遇到红灯;B.四个人分成三组,三组中有一组必有2人;
C.打开电视,正在播放动画片;D.抛一枚硬币,正面朝上;
5、(4分)如图,直线经过点,则关于的不等式的解集是( )
A.B.C.D.
6、(4分)如图,直线与轴交于点,依次作正方形、正方形、…正方形使得点、、…,在直线上,点、、…,在轴上,则点的坐标是( )
A.B.
C.D.
7、(4分)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )
A.B.
C.D.
8、(4分)如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA的度数为( )
A.40°B.50°C.60°D.70°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
10、(4分)如图,直线与x轴交点坐标为,不等式的解集是____________.
11、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.
12、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
13、(4分)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1);(2)÷
15、(8分)2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.
(1)该商家购进的第一批纪念衫单价是多少元?
(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?
16、(8分)某市篮球队在市一中选拔一名队员.教练对王亮和李刚两名同学进行5次3分投篮测试,每人每次投10个球,如图记录的是这两名同学5次投篮中所投中的个数.
(1)请你根据图中的数据,填写上表.
(2)你认为谁的成绩比较稳定,为什么?
(3)若你是教练,你打算选谁?简要说明理由.
17、(10分)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:
(1)填空:当点M在AC上时,BN= (用含t的代数式表示);
(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;
(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.
18、(10分)在中,BD是它的一条对角线,过A、C两点分别作,,E、F为垂足.
(1)如图,求证:;
(2)如图,连接AC,设AC、BD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.
20、(4分)如图,函数y= (x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为________.
21、(4分)在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.
22、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
23、(4分)在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,中,,点从点出发沿射线移动,同时,点从点出发沿线段的延长线移动,已知点、的移动速度相同,与直线相交于点.
(1)如图1,当点在线段上时,过点作的平行线交于点,连接、,求证:点是的中点;
(2)如图2,过点作直线的垂线,垂足为,当点、在移动过程中,线段、、有何数量关系?请直接写出你的结论: .
25、(10分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.
(1)请将条形统计图补充完整;
(2)这50户家庭月用水量的平均数是 ,众数是 ,中位数是 ;
(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?
26、(12分)如图,在四边形中,,,对角线,交于点,平分,过点作,交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据根式的计算法则计算即可.
【详解】
解:÷=
故选C.
本题主要考查分式的计算化简,这是重点知识,应当熟练掌握.
2、A
【解析】
根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.
【详解】
去掉一个最高分和一个最低分对中位数没有影响,故选A.
考查了统计量的选择,解题的关键是了解中位数的定义.
3、D
【解析】
A.从左到右的变形是整式乘法,不是因式分解;
B.右边不是整式积的形式,不是因式分解;
C.分解时右边括号中少了一项,故不正确,不符合题意;
D. 是因式分解,符合题意,
故选D.
本题考查了因式分解的意义,熟练掌握因式分解的定义是解本题的关键.
4、B
【解析】
分析:必然事件就是一定能发生的事件,根据定义即可作出判断.
详解:A、经过路口,恰好遇到红灯是随机事件,选项错误;
B、4个人分成三组,其中一组必有2人,是必然事件,选项正确;
C、打开电视,正在播放动画片是随机事件,选项错误;
D、抛一枚硬币,正面朝上是随机事件,选项错误.
故选B.
点睛:本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
5、B
【解析】
观察函数图象得到当x<2时,即图象在y轴的左侧,函数值都都大于1.
【详解】
解:观察函数图象可知当x<2时,y>1,所以关于x的不等式kx+b>1的解集是x<2.
故选:B.
本题考查了一次函数与一元一次不等式:从函数的角度看,关于的不等式的解集就是寻求使一次函数y=kx+b的值大于1的自变量x的取值范围.
6、D
【解析】
先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n−1,2n−1),据此即可求解.
【详解】
解:∵令x=0,则y=1,
∴A1(0,1),
∴OA1=1.
∵四边形A1B1C1O是正方形,
∴A1B1=1,
∴B1(1,1).
∵当x=1时,y=1+1=2,
∴B2(3,2);
同理可得,B3(7,4);
∴B1的纵坐标是:1=20,B1的横坐标是:1=21−1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22−1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23−1,
∴Bn的纵坐标是:2n−1,横坐标是:2n−1,
则Bn
故选:D.
本题考查了一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.
7、D
【解析】
解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.
8、D
【解析】
根据翻折不变性即可解决问题;
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠1=∠FEC,
由翻折不变性可知:∠FEA=∠FEC,
∵∠1=70°,
∴∠FEA=70°,
故选D.
本题考查了矩形的性质、平行线的性质、翻折变换等知识,解题的关键是灵活运用所学知识解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x>1
【解析】
根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵代数式在实数范围内有意义,
∴.
故答案为:x>1.
本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
10、
【解析】
根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.
【详解】
解:∵直线y=kx+b与x轴交点坐标为(1,0),
∴由图象可知,
当x≤1时,y≥0,
∴不等式kx+b≥0的解集是x≤1.
故答案是x≤1.
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
11、假设在直角三角形中,两个锐角都大于45°.
【解析】
反证法的第一步是假设命题的结论不成立,据此可以得出答案.
【详解】
∵反证法的第一步是假设命题的结论不成立,∴用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步即为,假设在直角三角形中,两个锐角都大于45°.
此题主要考查了反证法的知识,解此题的关键是掌握反证法的意义和步骤. 反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)由矛盾说明假设错误,从而证明原命题正确.
12、1
【解析】
由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
【详解】
解:连结,与交于点,
四边形是平行四边形,,
四边形是菱形,
,,.
,
在中,,
.
故答案为:1.
本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
13、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
三、解答题(本大题共5个小题,共48分)
14、 (1) -45;(2) 2+4.
【解析】
(1) 利用二次根式的乘法运算法则化简求出即可;(2) 利用二次根式的除法运算法则化简求出即可.
【详解】
(1) = =-18×=-45;
(2) ÷=(20-18+4)÷
=()÷ =2+4.
本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.
15、(1)该商家购进第一批纪念衫单价是30元;(2)每件纪念衫的标价至少是40元.
【解析】
(1)设未知量为x,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.
(2)设未知量为y,根据题意列出一元一次不等式,解不等式可得出结论.
【详解】
(1)设该商家购进第一批纪念衫单价是x元,则第二批纪念衫单价是(x+5)元,
由题意,可得:,
解得:x=30,
检验:当x=30时,x(x+5)≠0,
∴原方程的解是x=30
答:该商家购进第一批纪念衫单价是30元;
(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)
设每件纪念衫标价至少是a元,由题意,可得:
40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,
化简,得:116a≥4640
解得:a≥40,
答:每件纪念衫的标价至少是40元.
本题考查分式方程的应用,一元一次不等式的应用,解决此类题的关键是要根据题意找出题目中的等量或不等量关系,根据关系列方程或不等式解决问题.
16、 (1)从左到右依次填7,7,0.4;(2)王亮的成绩比较稳定;(3)选王亮,理由见解析.
【解析】
(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为李亮每次投篮平均数;根据众数定义,王刚投篮出现次数最多的成绩即为其众数;先算出王亮的成绩的平均数,再根据方差公式计算王亮的投篮次数的方差.
(2)比较他们两人的方差的大小,方差越小越稳定;
(3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要
【详解】
解:(1) 李刚投篮的平均数为:(4+7+7+8+9)÷5=7个,
王亮5次投篮,有3次投中7个,故7为众数;
王亮的方差为:S2=[(6-7)2+(7-7)2+(8-7)2+(7-7)2+(7-7)2]=0.4个
(2)王亮的成绩比较稳定.两人投中个数的平均数相同;从方差上看,王亮投中个数的方差小于李刚投中个数的方差,所以王亮的成绩比较稳定.
(3)选王亮,理由是成绩稳定或者选李刚,理由是他具有发展潜力,李刚越到后面投中个数越多.
此题是方差题,考查了实际问题,将数学知识与实际生活相联系,有利于培养学生学数学,用数学的意识,同时体现了数学来源于生活,应用于生活的本质.
17、(1)BN=2﹣t;(2)当t=4﹣或t=3或t=2时,△DNE是等腰三角形;(3)当t=时,S取得最大值.
【解析】
(1)由等腰直角三角形的性质知AB=2,MN=AM=t,AN=﹣AM=﹣t,据此可得;
(2)先得出MN=DM=4﹣t,BP=PN=t﹣2,PE=4﹣t,由勾股定理得出NE=,再分DN=DE,DN=NE,DE=NE三种情况分别求解可得;
(3)分0≤t<2和2≤t≤4两种情况,其中0≤t<2重合部分为直角梯形,2≤t≤4时重合部分为等腰直角三角形,根据面积公式得出面积的函数解析式,再利用二次函数的性质求解可得.
【详解】
(1)如图1,
∵∠ACB=90°,AC=BC=2,
∴∠A=∠ABC=45°,AB=2,
∵AM=t,∠AMN=90°,
∴MN=AM=t,AN=AM=t,
则BN=AB﹣AN=
故答案为
(2)如图2,
∵AM=t,AC=BC=CD=2,∠BDC=∠DBE=45°,
∴DM=MN=AD﹣AM=4﹣t,
∴DN=DM=(4﹣t),
∵PM=BC=2,
∴PN=2﹣(4﹣t)=t﹣2,
∴BP=t﹣2,
∴PE=BE﹣BP=2﹣(t﹣2)=4﹣t,
则NE=,
∵DE=2,
∴①若DN=DE,则(4﹣t)=2,解得t=4﹣;
②若DN=NE,则(4﹣t)=,解得t=3;
③若DE=NE,则2=,解得t=2或t=4(点N与点E重合,舍去);
综上,当t=4﹣或t=3或t=2时,△DNE是等腰三角形.
(3)①当0≤t<2时,如图3,
由题意知AM=MN=t,
则CM=NQ=AC﹣AM=2﹣t,
∴DM=CM+CD=4﹣t,
∵∠ABC=∠CBD=45°,∠NQB=∠GQB=90°,
∴NQ=BQ=QG=2﹣t,
则NG=4﹣2t,
∴
当t=时,S取得最大值;
②当2≤t≤4时,如图4,
∵AM=t,AD=AC+CD=4,
∴DM=AD﹣AM=4﹣t,
∵∠DMN=90°,∠CDB=45°,
∴MN=DM=4﹣t,
∴S=(4﹣t)2=(t﹣4)2,
∵2≤t≤4,
∴当t=2时,S取得最大值2;
综上,当t=时,S取得最大值.
本题是四边形的综合问题,解题的关键是掌握正方形的性质和等腰直角三角形的判定与性质,等腰三角形的判定及二次函数性质的应用等知识点.
18、(1)见解析;(2)OA、OC、EF.
【解析】
(1)根据平行四边形的AD∥BC,AB∥CD,AD=BC,AB=CD,根据平行线的性质得到∠ADE=∠CBF,由垂直的定义得到∠AEB=∠CFD=90°,根据全等三角形的性质即可得到结论;
(2)根据平行四边形的性质得到AO=CO,根据直角三角形的性质即可得到结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形
∴
∴
∵,,
∴
在和中
∴
∴
(2)∵四边形ABCD是平行四边形,
∴AO=CO,
∵∠DOC=120°,
∴∠AOE=60°,
∴∠OAE=30°,
∴AO=2OE,
∴OC=2OE,
∵OD=OB,DE=BF,
∴OE=OF,
∴EF=2OE.
本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.
【详解】
把(a,3)代入一次函数解析式y=-2x+9,得
3=-2a+9,
解得:a=3,
故答案为:3.
本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.
20、2
【解析】
如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH,从而得到结论.
【详解】
解:如图,连接OD,过O作OM∥ED交AD于M.
S△AOD=S△AOM+S△DOM=OM×h1+OM×h2==OM(h1+h2),S四边形ADEF=(AF+ED)h.
又∵OM=(AF+ED),h1+h2=h,故S△AOD=S四边形ADEF=×12=1.
∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.
∵ BD=2CD ,BC=3CD,故S矩形OCDH=×12=2,即CD×DH=xy=k1=2.
故答案为:2.
本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.
21、AB//CD等
【解析】
根据平行四边形的判定方法,结合已知条件即可解答.
【详解】
∵AB=CD,
∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)
或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.
故答案为AD=BC或者AB∥CD.
本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.
22、1
【解析】
平移的距离为线段BE的长求出BE即可解决问题;
【详解】
∵BC=EF=5,EC=3,
∴BE=1,
∴平移距离是1,
故答案为:1.
本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
23、1
【解析】
估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.
【详解】
因为共摸了200次球,发现有60次摸到黑球,
所以估计摸到黑球的概率为0.3,
所以估计这个口袋中黑球的数量为20×0.3=6(个),
则红球大约有20-6=1个,
故答案为:1.
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)或.
【解析】
(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;
(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.
【详解】
(1)四边形CDGE是平行四边形.理由如下:
∵D、E移动的速度相同,
∴BD=CE,
∵DG∥AE,
∴∠DGB=∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠DGB,
∴BD=GD=CE,
又∵DG∥CE,
∴四边形CDGE是平行四边形;
(2)当点D在AB边上时,BM+CF=MF;理由如下:
如图2,
由(1)得:BD=GD=CE,
∵DM⊥BC,
∴BM=GM,
∵DG∥AE,
∴GF=CF,
∴BM+CF=GM+GF=MF.
同理可证,当D点在BA的延长线上时,可证, 如图3,4.
本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.
25、 (1)补图见解析;(2)11.6,11,11;()210户.
【解析】
试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;
(2)利用众数,中位数以及平均数的公式进行计算即可;
(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.
解:(1)根据条形图可得出:
平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),
如图所示:
(2)这50 个样本数据的平均数是 11.6,众数是11,中位数是11;
故答案为;11.6,11,11;
(3)样本中不超过12吨的有10+20+5=35(户),
∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).
点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
26、(1)见解析;(2).
【解析】
(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;
(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=1,在Rt△OCD中,由勾股定理得:OD==2,得出BD=2OD=4,再由直角三角形斜边上的中线性质即可得出结果.
【详解】
(1)证明:,
,
平分,
,
,
,
,
,
,
四边形是平行四边形,
又,
四边形是菱形;
(2)四边形是菱形,
,,,
在中,由勾股定理得:,
,
,
,
,
.
本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.
题号
一
二
三
四
五
总分
得分
姓名
平均数(个)
众数(个)
方差
王亮
7
李刚
7
2.8
河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】: 这是一份河北省邯郸市邯郸市育华中学2025届数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省邯郸市馆陶县魏僧寨中学2024-2025学年数学九上开学质量检测模拟试题【含答案】: 这是一份河北省邯郸市馆陶县魏僧寨中学2024-2025学年数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省邯郸市2025届数学九上开学质量跟踪监视试题【含答案】: 这是一份河北省邯郸市2025届数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,第四象限,解答题等内容,欢迎下载使用。