|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】01
    2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】02
    2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】

    展开
    这是一份2024-2025学年贵州省正安县九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)菱形的对角线长分别是,则这个菱形的面积是( )
    A.B.C.D.
    2、(4分)如图,的坐标为,,若将线段平移至,则的值为( )
    A.5B.4C.3D.2
    3、(4分)在同一平面直角坐标系中,函数与的图象大致是( )
    A.B.C.D.
    4、(4分)下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是( )
    A.①⑤B.①④⑤C.②⑤D.②④⑤
    5、(4分)菱形ABCD中,∠A=60°,周长是16,则菱形的面积是( ) .
    A.16B.16C.16D.8
    6、(4分)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差s2:
    根据表中数据,要从中进选择一名成的绩责好又发挥稳定的运动员参加比赛,应该选择( )
    A.乙B.甲C.丙D.丁
    7、(4分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
    A.B.2C.D.2
    8、(4分)如图,中,是边的中点,平分于已知则的长为( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)等边三角形的边长为6,则它的高是________
    10、(4分)某市出租车的收费标准是:千米以内(包括千米)收费元,超过千米,每增加千米加收元,则当路程是(千米)()时,车费(元)与路程(千米)之间的关系式(需化简)为:________.
    11、(4分)方程-x=1的根是______
    12、(4分)己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.
    13、(4分)如图,在ABCD中,对角线AC,BD相交于点O,若再增加一个条件,就可得出ABCD是菱形,则你添加的条件是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,在△ABC中,点D为BC边上的一点,AD=12,BD=16,AB=20,CD=1.
    (1)试说明AD⊥BC.
    (2)求AC的长及△ABC的面积.
    (3)判断△ABC是否是直角三角形,并说明理由.
    15、(8分)定义:任意两个数,,按规则得到一个新数,称所得的新数为数,的“传承数.”
    (1)若,,求,的“传承数”;
    (2)若,,且,求,的“传承数”;
    (3)若,,且,的“传承数”值为一个整数,则整数的值是多少?
    16、(8分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某单位计划在室内安装空气净化装置,需购进A,B两种设备,每台B种设备价格比每台A种设备价格多700元,花3000元购买A种设备和花7200元购买B种设备的数量相同.
    (1)求A种、B种设备每台各多少元?
    (2)根据单位实际情况,需购进A,B两种设备共20台,总费用不高于17000元,求A种设备至少要购买多少台?
    17、(10分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:
    (1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
    (2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们20%、10%、30%和40%的权重,请分别计算两名选手的最终成绩,从他们的这一成绩看,应选派谁.
    18、(10分)如图,四边形是菱形,对角线,相交于点,且.
    (1)菱形的周长为 ;
    (2)若,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.
    20、(4分)如图,AF是△ABC的高,点D.E分别在AB、AC上,且DE||BC,DE交AF于点G,AD=5,AB=15,AC=12,GF=6.求AE=____;
    21、(4分)在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.
    22、(4分)如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.
    23、(4分)某工厂为满足市场需要,准备生产一种大型机械设备,已知生产一台这种大型机械设备需,,三种配件共个,且要求所需配件数量不得超过个,配件数量恰好是配件数量的倍,配件数量不得低于,两配件数量之和.该工厂准备生产这种大型机械设备台,同时决定把生产,,三种配件的任务交给一车间.经过试验,发现一车间工人的生产能力情况是:每个工人每天可生产个配件或个配件或个配件.若一车间安排一批工人恰好天能完成此次生产任务,则生产一台这种大型机械设备所需配件的数量是_______个.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知点A在反比例函数(x>0)的图像上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B.
    (1)求点A的坐标;
    (2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.
    25、(10分)解方程:
    (1);
    (2).
    26、(12分)(1)计算并观察下列各式:
    第个: ;
    第个: ;
    第个:;
    ······
    这些等式反映出多项式乘法的某种运算规律.
    (2)猜想:若为大于的正整数,则;
    (3)利用(2)的猜想计算;
    (4)拓广与应用.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.
    【详解】
    菱形的面积:
    故选:B.
    此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.
    2、D
    【解析】
    平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.
    【详解】
    解:由B点平移前后的纵坐标分别为1、1,可得B点向上平移了1个单位,
    由A点平移前后的横坐标分别是为1、3,可得A点向右平移了1个单位,
    由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
    所以点A、B均按此规律平移,
    由此可得a=0+1=1,b=0+1=1,
    故a+b=1.
    故选D.
    本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.
    3、C
    【解析】
    分别讨论k>0和k<0时一次函数和二次函数的图像即可求解.
    【详解】
    当k>0时,函数y=kx+k的图象经过一、二、三象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴左部;
    当k<0时,函数y=kx+k的图象经过二、三、四象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴右部;
    故C正确.
    故选C.
    本题考查的是一次函数和二次函数的图像,熟练掌握两者是解题的关键.
    4、A
    【解析】
    根据一次函数的定义条件进行逐一分析即可.
    【详解】
    解:①y=-2x是一次函数;
    ②y=−自变量次数不为1,故不是一次函数;
    ③y=-2x2自变量次数不为1,故不是一次函数;
    ④y=2是常函数;
    ⑤y=2x-1是一次函数.
    所以一次函数是①⑤.
    故选:A.
    本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
    5、D
    【解析】
    分析:过点D作DE⊥BC于点E,根据菱形的性质以及直角三角形的性质得出DE的长,即可得出菱形的面积.
    详解:如图所示:过点D作DE⊥BC于点E,
    ∵在菱形ABCD中,周长是16,
    ∴AD=AB=4,
    ∵∠A=60°,
    ∴∠ADE=30°,
    ∴AE==2,
    ∴DE=,
    ∴菱形ABCD的面积S=DE×AB=8.
    故选D.
    点睛:题主要考查了菱形的面积以及其性质,含30°角的直角三角形的性质,勾股定理,得出DE的长是解题关键.
    6、B
    【解析】
    根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.
    【详解】
    ∵=3.5,=3.5,=12.5,=15,
    ∴=<<,
    ∵=175,=173,.
    >,
    ∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲,
    故选B.
    本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    7、C
    【解析】
    在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.
    【详解】
    在Rt△ACD中,∠A=45°,CD=1,
    则AD=CD=1,
    在Rt△CDB中,∠B=30°,CD=1,
    则BD=,
    故AB=AD+BD=+1.
    故选C.
    本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.
    8、A
    【解析】
    延长BE交AC于F,由三线合一定理,得到△ABF是等腰三角形,则AF=AB=10,BE=EF,根据三角形中位线定理计算即可.
    【详解】
    解:延长交于点.
    ,平分,
    为等腰三角形.
    ,E为的中点
    又为的中点
    为的中位线,
    故选:A.
    本题考查的是三角形中位线定理、三线合一定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据等边三角形的性质:三线合一,利用勾股定理可求解高.
    【详解】
    由题意得底边的一半是3,再根据勾股定理,得它的高为=3,
    故答案为3.
    本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.
    10、
    【解析】
    根据题意可以写出相应的函数关系式,本题得以解决.
    【详解】
    由题意可得,
    当x>3时,
    y=5+(x-3)×1.2=1.2x+1.1,
    故答案为:y=1.2x+1.1.
    本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.
    11、x=3
    【解析】
    先将-x移到方程右边,再把方程两边平方,使原方程化为整式方程x2=9,求出x的值,把不合题意的解舍去,即可得出原方程的解.
    【详解】
    解:整理得:=x+1,
    方程两边平方,得:2x+10=x2+2x+1,
    移项合并同类项,得:x2=9,
    解得:x1=3,x2=-3,
    经检验,x2=-3不是原方程的解,
    则原方程的根为:x=3.
    故答案为:x=3.
    本题考查了解无理方程,无理方程在有些地方初中教材中不再出现,比如湘教版.
    12、
    【解析】
    分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.
    详解:∵三角形三边长分别为,,

    ∴三角形是直角三角形

    ∴高为
    故答案为.
    点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.
    13、AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA
    【解析】
    根据一组邻边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC或BC=CD或CD=AD或AD=AB;
    根据对角线互相垂直的平行四边形是菱形可得,添加的条件可以是:AC⊥BD;
    根据四边相等的平行四边形是菱形可得,添加的条件可以是:AB=BC=CD=DA.
    故答案是:AB=BC或BC=CD或CD=AD或AD=AB或AC⊥BD或AB=BC=CD=DA.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)15,150;(3)是
    【解析】
    试题分析:(1)根据勾股定理的逆定理即可判断;
    (2)先根据勾股定理求得斜边的长,再根据直角三角形的面积公式即可求得结果;
    (3)根据勾股定理的逆定理即可判断.
    (1)
    ∴是直角三角形
    ∴即;
    (2)∵,且点为边上的一点

    ∴由勾股定理得:
    ∴;
    (3)是直角三角形

    ∴是直角三角形.
    考点:本题考查的是勾股定理,直角三角形的面积公式,勾股定理的逆定理
    点评:解答本题的根据是熟练掌握勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.
    15、(1);(2);(3)为-2、0、2或4
    【解析】
    (1)根据题意和a、b的值可以求得“传承数”c;
    (2)由,可得,进而可求“传承数”c;
    (3)根据(2)中的结论和分式有意义的条件可以求得m的值.
    【详解】
    (1)∵,

    (2)∵
    ∴,两边同时除以得:

    ∵,

    (3)∵,

    ∵为整数,为整数 ∴为-3、-1、1或3
    ∴为-2、0、2或4.
    本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.
    16、(1)每台A种设备500元,每台B种设备1元;(2)A种设备至少要购买2台.
    【解析】
    (1)设每台A种设备x元,则每台B种设备(x+700)元,根据数量=总价÷单价结合花3000元购买A种设备和花7200元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)设购买A种设备m台,则购买B种设备(20−m)台,根据总价=单价×数量结合总费用不高于17000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.
    【详解】
    (1)设每台A种设备x元,则每台B种设备(x+700)元,
    根据题意得:,
    解得:x=500,
    经检验,x=500是原方程的解,
    ∴x+700=1.
    答:每台A种设备500元,每台B种设备1元;
    (2)设购买A种设备m台,则购买B种设备(20﹣m)台,
    根据题意得:500m+1(20﹣m)≤17000,
    解得:m≥2.
    答:A种设备至少要购买2台.
    本题考查了分式方程的应用以及一元一次不等式的应用,正确的理解题意是解题的关键.
    17、(1)乙的平均成绩是79.5(分),应选派甲;(2)甲的最终成绩:79.5(分),
    乙的最终成绩:80.4(分),应选派乙.
    【解析】
    (1)求出乙的平均成绩,与甲作比较即可;
    (2)分别计算甲乙的加权平均数,得到最终成绩,再进行比较即可.
    【详解】
    解:(1)乙的平均成绩:(73+80+82+83)=79.5(分),
    ∵甲的平均成绩为80.25,
    ∴应选派甲;
    (2)甲的最终成绩:85×20%+78×10%+85×30%+73×40%=79.5(分)
    乙的最终成绩:73×20%+80×10%+82×30%+83×40%=80.4(分)
    ∴应选派乙.
    本题考查了算术平均数和加权平均数,熟练掌握求算术平均数和加权平均数的方法是解题的关键.
    18、 (1)1; (2)AC=
    【解析】
    (1)由菱形的四边相等即可求出其周长;
    (2)利用勾股定理可求出AO的长,进而解答即可.
    【详解】
    解:(1)∵四边形ABCD是菱形,AB=2,
    ∴菱形ABCD的周长为:1;
    故答案为1.
    (2)∵四边形ABCD是菱形,BD=2,AB=2,
    ∴AC⊥BD,BO=1,
    ∴AO=,
    ∴AC=2AO=.
    本题主要考查菱形的性质,能够利用勾股定理求出AO的长是解题关键,此题难度一般.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或
    【解析】
    分析:由题意可知P点可能靠近B点,也可能靠近A点,所以需要分为两种情况:设BM=x,AQ=y,
    若P靠近B点,由题意可得∠BPM=30°,根据直角三角形的性质可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根据AB=BC=5,PQ=1,列方程组,解出x、y即可求得BP的长;
    若点P靠近A点,同理可得,求解即可.
    详解:设BM=x,AQ=y,
    若P靠近B点,如图
    ∵等边△ABC,
    ∴AB=BC=AC=5,∠A=∠B=∠C=60°
    ∵PM⊥BC
    ∴∠BMP=90°
    则Rt△BMP中,∠BPM=30°,
    ∴BM=BP
    则BP=2x
    同理AN=2y,
    则CN=5-2y
    在Rt△BCM中,CM=2CN=10-4y
    ∵AB=BC=5,PQ=1

    解得
    ∴BP=2x=;
    若点P靠近A点,如图
    由上面的解答可得BP=2x,AQ=y,CM=10-4y

    解得
    ∴BP=2x=
    综上可得BP的长为:或.
    点睛:此题主要考查了等边三角形的性质和30°角的直角三角形的性质,关键是正确画图,分两种情况讨论,注意掌握和明确方程思想和数形结合思想在解题中的作用.
    20、4
    【解析】
    证明△ADE∽△ABC,利用相似三角形的对应边的比相等即可求解;
    【详解】
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴ ,即 ,
    解得AE=4;
    故答案为:4
    此题考查相似三角形的判定与性质,难度不大
    21、1.
    【解析】
    根据三角形中位线定理解答即可.
    【详解】
    ∵D,E分别为AC,BC的中点,
    ∴AB=2DE=1,
    故答案为:1.
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    22、6
    【解析】
    由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,
    ∴∠APO=∠COD,
    在△AOP与△CDO中,

    ∴△AOP≌△CDO(AAS),
    ∴AP=CO=AC﹣AO=9﹣3=6.
    故答案为6.
    23、1.
    【解析】
    设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意列不等式组可得 ;由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,由a,b,c都是正整数求解,即可得出答案.
    【详解】
    解:设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意得
    ,解得,
    由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,则
    ,解得 ,
    因为a,b,c都是正整数,
    所以a=1,b=2,c=2,
    所以每天生产一台这种大型机械设备所需配件的数量是40×2=80(个),
    这种大型机械设备台所需配件的数量是80×10=1(个).
    故答案为:1.
    本题考查一元一次不等式组的应用,本题难点在于根据题意列不等式组求出x的取值范围.解题的关键是解一元一次不等式组得出x的取值范围.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)y=+2
    【解析】
    (1)由AC=OC,设A(m,m)代入反比例函数得m2=9,求出A点坐标;
    (2)利用四边形ABOC的面积求出B点坐标,再用待定系数法确定函数关系式即可求出AB的解析式.
    【详解】
    (1)∵AC=OC
    ∴可设A(m,m)
    ∵点A(m,m)在y=的图像上
    ∴m2=9
    ∴m=±3
    ∵x>0
    ∴m=3
    (2)∵AC⊥x轴,OB⊥x轴
    ∴ S四边形ABOC==(3+OB)·3=
    ∴OB=2
    ∴B(0,2)
    ∵y=kx+b过点A(3,3),B(0,2)


    ∴一次函数的表达式为y=+2
    此题主要考查反比例函数钰一次函数综合,解题的关键是求出A点坐标.
    25、 (1),; (2) ,
    【解析】
    (1)运用因式分解法求解即可;
    (2)运用公式法求解即可.
    【详解】
    (1)


    (2)
    ∵a=2,b=3,c=-1
    ∴Δ=9-4×2×(-1)=17>0


    此题考查解一元二次方程,熟练掌握各种解法适用的题型,选择合适的方法解题是关键.
    26、 (1)、、;(2); (3); (4)
    【解析】
    (1)根据多项式乘多项式的乘法计算可得;
    (2)利用(1)中已知等式得出该等式的结果为a、b两数n次幂的差;
    (3)将原式变形为,再利用所得规律计算可得;
    (4)将原式变形为,再利用所得规律计算可得.
    【详解】
    (1)第1个:;
    第2个:;
    第3个:;
    故答案为:、、;
    (2)若n为大于1的正整数,
    则,
    故答案为:;
    (3)

    故答案为:;
    (4)

    故答案为:.
    本题考查了多项式乘以多项式以及平方差公式,观察等式发现规律是解题关键.
    题号





    总分
    得分




    平均数
    175
    173
    175
    174
    方差s2
    3.5
    3.5
    12.5
    15
    选手
    表达能力
    阅读理解
    综合素质
    汉字听写

    85
    78
    85
    73

    73
    80
    82
    83
    相关试卷

    2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年贵州铜仁伟才学校九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年贵州省铜仁松桃县联考数学九年级第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九年级第一学期开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年贵州省仁怀市九年级数学第一学期开学联考模拟试题【含答案】: 这是一份2024-2025学年贵州省仁怀市九年级数学第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map