2024-2025学年福建省福州市三牧中学数学九年级第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把中根号外的(a-1)移入根号内,结果是( )
A.B.C.D.
2、(4分)如图,点,在反比例函数的图象上,连结,,以,为边作,若点恰好落在反比例函数的图象上,此时的面积是( )
A.B.C.D.
3、(4分)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是( )
A.方案一B.方案二C.方案三D.方案四
4、(4分)下列命题是真命题的是( )
A.平行四边形对角线相等B.直角三角形两锐角互补
C.不等式﹣2x﹣1<0的解是x<﹣D.多边形的外角和为360°
5、(4分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是( )
A.经过第一、二、四象限B.与x轴交于(1,0)
C.与y轴交于(0,1)D.y随x的增大而减小
6、(4分)菱形的对角线长分别是,则这个菱形的面积是( )
A.B.C.D.
7、(4分)甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )
A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h
8、(4分)不等式x+1≥2x﹣1的解集在数轴上表示为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知实数、满足,则_____.
10、(4分)若点、在双曲线上,则和的大小关系为______.
11、(4分)如图,在平行四边形ABCD中,∠A=45°,BC=cm,则AB与CD之间的距离为________cm.
12、(4分)如图,在中,,,的面积是,边的垂直平分线分别交,边于点,.若点为边的中点,点为线段上一动点,则周长的最小值为__________.
13、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.
有下列结论:
①点C的坐标为(12,);②BD=CE;
③四边形ADBE的面积为定值;
④当D为OB的中点时,△DBE的面积最小.
其中正确的有_______.(把你认为正确结论的序号都填上)
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象经过点A ,B 两点.
(1)求这个一次函数的解析式;
(2)求一次函数的图像与两坐标轴所围成的三角形的面积.
15、(8分)(1)因式分解:
(2)解不等式组:
16、(8分)如图1是一个长时间没有使用的弹簧测力计,经刻度盘,指针,吊环,挂钩等个部件都齐全,但小明还是对其准确程度表示怀疑,于是他利用数学知识对这个弹簧测力计进行检验。下表是他记录的数据的一部分:
在整理数据的过程中,他发现在所挂物体的质量不超过1㎏时,弹簧的长度与弹簧所挂物体的质量之间存在着函数关系,于是弹簧所挂物体的质量x㎏,弹簧的长度为ycm。
(1)请你利用如图2的坐标系,描点并画出函数的大致图象。
(2)根据函数图象,猜想y与x之间是怎样的函数,求出对应的函数解析式。
(3)你认为该测力计是否可以正常使用,如果可以,请你求出所挂物体的质量为1㎏时,弹簧的长度;如果不可以,请说明理由。
17、(10分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.
18、(10分)已知一次函数的图象经过点A(0,﹣2),B(3,4),C(5,m).
求:(1)这个一次函数的解析式;
(2)m的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点,点,若线段AB的中点恰好在x轴上,则m的值为_________.
20、(4分)已知正n边形的一个外角是45°,则n=____________
21、(4分)直线y=3x+2沿y轴向下平移4个单位,则平移后直线与y轴的交点坐标为_______.
22、(4分)如图,在平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=_____度.
23、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.
25、(10分)如图,延长□ABCD的边AB到点E,使BE=AB,连结CE、BD、DE.当AD与DE 有怎样的关系时,四边形BECD是矩形?(要求说明理由)
26、(12分)如图,正方形ABCD,AB=4,点M是边BC的中点,点E是边AB上的一个动点,作EG⊥AM交AM于点G,EG的延长线交线段CD于点F.
(1)如图①,当点E与点B重合时,求证:BM=CF;
(2)设BE=x,梯形AEFD的面积为y,求y与x的函数解析式,并写出定义域.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.
【详解】
∵要是根式有意义,必须-≥0,
∴a-1<0,
∴(a-1)=-,
故选C.
本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.
2、A
【解析】
连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,设点A(a,),点C(m,)(a<0,m>0),由平行四边形的性质和中点坐标公式可得点B[(a+m),(+)],把点B坐标代入解析式可求a=-2m,由面积和差关系可求解.
【详解】
解:如图,连接AC,BO交于点E,作AG⊥x轴,CF⊥x轴,
设点A(a,),点C(m,)(a<0,m>0),
∵四边形ABCO是平行四边形,
∴AC与BO互相平分,
∴点E(),
∵点O坐标(0,0),
∴点B[(a+m),(+)].
∵点B在反比例函数y=(x<0)的图象上,
∴,
∴a=-2m,a=m(不合题意舍去),
∴点A(-2m,),
∴四边形ACFG是矩形,
∴S△AOC=(+)(m+2m)--1=,
∴▱OABC的面积=2×S△AOC=3.
故选:A.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,中点坐标公式,解决问题的关键是数形结合思想的运用.
3、D
【解析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.
故选:D.
此题主要考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
4、D
【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.
【详解】
平行四边形对角线不一定相等,A是假命题;
直角三角形两锐角互余,B是假命题;
不等式-2x-1<0的解是x>-,C是假命题;
多边形的外角和为360°,D是真命题;
故选D.
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
5、C
【解析】
利用一次函数图象的平移规律,左加右减,上加下减,得出即可.
【详解】
将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,
A、直线y=x+1经过第一、二、三象限,错误;
B、直线y=x+1与x轴交于(﹣1,0),错误;
C、直线y=x+1与y轴交于(0,1),正确;
D、直线y=x+1,y随x的增大而增大,错误,
故选C.
本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.
6、B
【解析】
根据菱形的面积公式:菱形面积=ab(a、b是两条对角线的长度)可得到答案.
【详解】
菱形的面积:
故选:B.
此题主要考查了菱形的面积公式,关键是熟练掌握面积公式.
7、B
【解析】
设甲的速度为x千米/小时,则乙的速度为 千米/小时,由题意可得,2(x+)>24,解得x>8,所以要保证在2小时以内相遇,则甲的速度要大于8km/h,故选B.
8、B
【解析】
先求出不等式的解集,再根据不等式解集的表示方法,可得答案.
【详解】
移项,
得:x﹣2x≥﹣1﹣1,
合并同类项,
得:﹣x≥﹣2,
系数化为1,
得:x≤2,
将不等式的解集表示在数轴上如下:
.
故选B.
本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:等式的右边==等式的左边,
∴,
解得:
,
∴A+B=3,
故答案为:3
本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法.
10、
【解析】
根据反比例函数的增减性解答即可.
【详解】
将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.
故答案为.
此题考查反比例函数的性质,解题关键在于掌握其性质.
11、1
【解析】
分析:过点D作DE⊥AB,根据等腰直角三角形ADE的性质求出DE的长度,从而得出答案.
详解:过点D作DE⊥AB,∵∠A=45°, DE⊥AB, ∴△ADE为等腰直角三角形,
∵AD=BC=, ∴DE=1cm, 即AB与CD之间的距离为1cm.
点睛:本题主要考查的是等腰直角三角形的性质,属于基础题型.解决这个问题的关键就是作出线段之间的距离,根据直角三角形得出答案.
12、10
【解析】
连接AD,根据等腰三角形的性质可得而AD⊥BC,根据三角形的面积求出AD的长,由EF是AC的垂直平分线可得当AD,EF交点M时,周长的最小值为AD+CD的长,故可求解.
【详解】
连接AD,∵,点为边的中点,
∴AD⊥BC,
∵,的面积是,
∴AD=16×2÷4=8,
∵EF是AC的垂直平分线,
∴点C关于直线EF的对称点为A,
∴AD的长为CM+MD的最小值,
∴周长的最小值为AD+CD=8+BC=8+2=10.
故填:10.
此题主要考查对称轴的应用,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.
13、①②③
【解析】
①过点C作CF⊥OB,垂足为点F,求出BF=4,CF=,即可求出点C坐标;②连结AB,证明△ADB≌△AEC,则BD=CE;③由S△ADB=S△AEC,可得S△ABC=S△四边形ADBE=×8×=;④可证△ADE为等边三角形,当D为OB的中点时,AD⊥OB,此时AD最小,则S△ADE最小,由③知S四边形ADBE为定值,可得S△DBE最大.
【详解】
解:①过点C作CF⊥OB,垂足为点F,
∵四边形AOBC为菱形,
∴OB=BC=8,∠AOB=∠CBF=60°,
∴BF=4,CF=,
∴OF=8+4=12,
∴点C的坐标为(12,),故①正确;
②连结AB,
∵BC=AC=AO=OB,∠AOB=∠ACB=60°,
∴△ABC是等边三角形,△AOB是等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠DAB=∠EAC,
∵∠ABD=∠ACE=60°,
∴△ADB≌△AEC(ASA),
∴BD=CE,故②正确;
③∵△ADB≌△AEC.
∴S△ADB=S△AEC,
∴S△ABC=S△四边形ADBE=×8×=,故③正确;
④∵△ADB≌△AEC,
∴AD=AE,
∵∠DAE=60°,
∴△ADE为等边三角形,
当D为OB的中点时,AD⊥OB,
此时AD最小,则S△ADE最小,
由③知S四边形ADBE为定值,可得S△DBE最大.
故④不正确;
故答案为:①②③.
本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质等,正确作出辅助线是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)4.
【解析】
(1)先利用待定系数法确定一次函数的解析式是y=2x-4;
(2)先确定直线y=2x-4与两坐标轴的交点坐标,然后根据三角形面积公式求解.
【详解】
解: (1)设这个一次函数的解析式为: y=kx+b(k≠0) .
将点A代入上式得:
解得
∴这个一次函数的解析式为:
(2) ∵
∴当y=0时,2x-4=0,则x=2
∴图象与x轴交于点C(2,0)
∴
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于把已知点代入解析式
15、(1)2ax(x+2)(x−2);(2)−3<x<1.
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=2ax(x2−4)=2ax(x+2)(x−2);
(2),
由①得:x>−3,
由②得:x<1,
则不等式组的解集为−3<x<1.
此题考查了提公因式法与公式法的综合运用,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
16、 (1)见解析;(2);(3)弹簧所挂物体的质量为1㎏时,弹簧的长度为17cm,理由见解析
【解析】
(1)根据表格中的数据即可画出图象;(2)先设出一次函数关系式,再由表格中任取两对数代入即可;(3)计算后只要不超过弹簧的最大限度1㎏就可以.
【详解】
(1)如图所示
(2)y与x之间是一次函数关系
对应的解析式为(k≠0)
由于点(0,12),(0.1,12.5)都在函数的图象上
解得:
∴
经检验(0.2,12),(0.3,13.5),(0.4,14)均满足
(3)可以正常使用,但不能超过弹簧的最大限度(不超过1㎏)
当x=1时,y=17
∴弹簧所挂物体的质量为1㎏时,弹簧的长度为17cm。
本题考查了一元函数的应用,解题时从实际问题中整理出函数模型并利用函数的知识解决实际问题.
17、(1)证明见解析;(2)DF=;(3)PF=.
【解析】
试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.
试题解析:(1)、∵矩形ABCD ∴AD=BC,AB=CD,AB∥CD ∴∠ACD=∠CAB
∵△AEC由△ABC翻折得到 ∴AB="AE,BC=EC," ∠CAE=∠CAB ∴AD=CE,DC=EA,∠ACD=∠CAE,
在△ADE与△CED中∴△DEC≌△EDA(SSS);
(2)、如图1,∵∠ACD=∠CAE, ∴AF=CF, 设DF=x,则AF=CF=4﹣x,
在RT△ADF中,AD2+DF2=AF2, 即32+x2=(4﹣x)2, 解得;x=, 即DF=.
(3)、四边形APCF为菱形 设AC、FP相较于点O ∵FP⊥AC ∴∠AOF=∠AOP
又∵∠CAE=∠CAB, ∴∠APF=∠AFP ∴AF=AP ∴FC=AP
又∵AB∥CD ∴四边形APCF是平行四边形 又∵FP⊥AC ∴四边形APCF为菱形 PF=
考点:(1)、折叠图形的性质;(2)、菱形的性质;(3)、三角形全等;(4)、勾股定理.
18、(1)y=1x﹣1;(1)2.
【解析】
(1)利用待定系数法把点A(0,-1),B(3,4)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;
(1)把C(5,m)代入y=1x-1,即可求得m的值
【详解】
解:∵一次函数y=kx+b的图象经过点A(0,﹣1),B(3,4),
∴,
解得:
∴这个一次函数的表达式为y=1x﹣1.
(1)把C(5,m)代入y=1x﹣1,得m=1×5﹣1=2.
此题主要考查了待定系数法求一次函数解析式和一次函数图象上点点坐标特征,熟练掌握待定系数法求一次函数步骤是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
因为点A,B的横坐标相同,线段AB的中点恰好在x轴上,故点A,B关于x轴对称,纵坐标互为相反数,由此可得m的值.
【详解】
解:点A,B的横坐标相同,线段AB的中点恰好在x轴上
点A,B关于x轴对称,纵坐标互为相反数
点A的纵坐标为-2
故答案为:2
本题考查了平面直角坐标系中点的对称问题,正确理解题意是解题的关键.
20、8
【解析】
解:∵多边形的外角和为360°,正多边形的一个外角45°,
∴多边形得到边数360÷45=8,所以是八边形.
故答案为8
21、(0,-2)
【解析】
y=3x+2沿y轴向下平移4个单位y=3x+2-4=3x-2,
令x=0,y=-2, 所以(0,-2).
故交点坐标(0,-2).
22、
【解析】
由DB=DC,∠C=70°可以得到∠DBC=∠C=70°,又由AD∥BC推出∠ADB=∠DBC=∠C=70°,而∠AED=90°,根据直角三角形两锐角互余即可求得答案.由此可以求出∠DAE.
【详解】
∵DB=DC,∠C=70°,
∴∠DBC=∠C=70°,
在平行四边形ABCD中,
∵AD∥BC,AE⊥BD,
∴∠ADB=∠DBC=∠C=70°,∠AED=90°,
∴∠DAE=-70°=20°.
故填空为:20°.
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形两锐角互余的性质,熟练掌握相关性质与定理是解题的关键.
23、﹣8
【解析】
首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.
【详解】
∵y与x-1成正比例,
∴关系式设为:y=k(x-1),
∵x=3时,y=4,
∴4=k(3-1),
解得:k=2,
∴y与x的函数关系式为:y=2(x-1)=2x-2,
当x=-3时,y=-6-2=-8,
故答案为:-8.
本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.
二、解答题(本大题共3个小题,共30分)
24、-3,-1.
【解析】
首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.
【详解】
①×1得:1x-4y=1m③,
②-③得:y=,
把y=代入①得:x=m+,
把x=m+,y=代入不等式组中得:
,
解不等式组得:-4≤m≤-,
则m=-3,-1.
考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.
25、当AD=DE时,四边形BECD是矩形,理由见解析.
【解析】
根据平行四边形的性质和已知条件易证四边形BECD为平行四边形,要使四边形BECD是矩形,根据矩形的定义,只要满足DB⊥BE即可,进而可得AD与DE 的关系.
【详解】
解:当AD=DE时,四边形BECD是矩形,理由如下:
∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,
∵BE=AB,∴BE∥DC,BE =DC,
∴四边形BECD为平行四边形,
∵AD=DE,∴DB⊥BE,
∴□BECD为矩形.
本题考查了平行四边形的性质、等腰三角形的性质和矩形的判定,属于常考题型,熟练掌握上述基本知识是解题的关键.
26、(1)见解析;(2)y与x的函数解析式为.
【解析】
(1)证明△BAM≌△CBF,根据全等三角形的性质证明;
(2)作EH⊥CD于H,根据全等三角形的性质求出FH,再根据梯形的面积公式计算即可.
【详解】
(1)证明:∵GE⊥AM,∴∠BAM+∠ABG=90°,又∠CBF+∠ABG=90°,
在△BAM和△CBF中,∠BAM=∠CBF,AB=BC,∠ABM=∠BCF,
∴△BAM≌△CBF(ASA),∴BM=CF;
(2)解:作EH⊥CD于H,由(1)得:△BAM≌△HEF,
∴HF=BM=2,∴DF=4-2-x=2-x,
∴,
答:y与x的函数解析式为.
故答案为:(1)见解析;(2)y与x的函数解析式为.
本题考查了全等三角形的判定与性质、正方形的性质.
题号
一
二
三
四
五
总分
得分
弹簧所挂物体的质量(单位:㎏)
0
0.1
0.2
0.3
0.4
弹簧的长度(单位cm)
12
12.5
13
13.5
14
2024-2025学年福建省福州市延安中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省福州市延安中学数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州三牧中学数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年福建省福州三牧中学数学九年级第一学期开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市名校九上数学开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年福建省福州市名校九上数学开学质量跟踪监视试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。