|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析01
    2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析02
    2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析

    展开
    这是一份2022届北京朝阳区第十七中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了若分式有意义,则的取值范围是,若点A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是(  )

    A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
    2.下列四个式子中,正确的是(  )
    A. =±9 B.﹣ =6 C.()2=5 D.=4
    3.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为(  )
    A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y1
    4.若分式有意义,则的取值范围是( )
    A.; B.; C.; D..
    5.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为(  )
    A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
    6.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为(  )
    A.﹣ B.﹣3 C. D.3
    7.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    8.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    9.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是(  )
    A.
    B.
    C.
    D.
    10.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.

    12.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.

    13.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是(  )

    A.1+ B.4+ C.4 D.-1+
    14.2017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_____.
    15.因式分解:9x﹣x2=_____.
    16.计算的结果等于______________________.
    17.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同.
    (1)求购买一个A种品牌、一个B种品牌的足球各需多少元.
    (2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?
    (3)请你求出学校在第二次购买活动中最多需要多少资金?
    19.(5分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
    求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
    20.(8分)如图,矩形中,点是线段上一动点, 为的中点, 的延长线交BC于.

    (1)求证: ;
    (2)若,,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.
    21.(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.
    (1)求k和b的值;
    (2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;
    (3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

    22.(10分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.
    23.(12分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.

    (1)求证:DE=DB:
    (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
    (3)若BD=6,DF=4,求AD的长
    24.(14分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    结合图形,逐项进行分析即可.
    【详解】
    在△ADC和△BAC中,∠ADC=∠BAC,
    如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
    ②,
    故选C.
    【点睛】
    本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
    2、D
    【解析】
    A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
    【详解】
    A、=9,故A错误;
    B、-=−=-6,故B错误;
    C、()2=2+2+3=5+2,故C错误;
    D、==4,故D正确.
    故选D.
    【点睛】
    本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
    3、D
    【解析】
    试题分析:根据二次函数的解析式y=3(x-1)2+k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3>y2>y1.
    故选D
    点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.
    4、B
    【解析】
    分式的分母不为零,即x-2≠1.
    【详解】
    ∵分式有意义,
    ∴x-2≠1,
    ∴.
    故选:B.
    【点睛】
    考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
    5、B
    【解析】
    科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将1350000000用科学记数法表示为:1350000000=1.35×109,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
    6、B
    【解析】
    设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
    【详解】
    设该点的坐标为(a,b),则|b|=1|a|,
    ∵点(a,b)在正比例函数y=kx的图象上,
    ∴k=±1.
    又∵y值随着x值的增大而减小,
    ∴k=﹣1.
    故选:B.
    【点睛】
    本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
    7、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    8、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    9、C
    【解析】
    首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
    故选C.
    点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
    10、C
    【解析】
    根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
    【详解】
    解:由题意可得,
    y==,
    当x=40时,y=6,
    故选C.
    【点睛】
    本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
    【详解】
    作MG⊥DC于G,如图所示:

    设MN=y,PC=x,
    根据题意得:GN=2,MG=|10-1x|,
    在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
    即y1=21+(10-1x)1.
    ∵0<x<10,
    ∴当10-1x=0,即x=2时,y1最小值=12,
    ∴y最小值=2.即MN的最小值为2;
    故答案为:2.
    【点睛】
    本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
    12、x1=1,x2=﹣1.
    【解析】
    直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
    【详解】
    解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
    ∴抛物线与x轴的另一交点坐标为(﹣1,0),
    ∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
    故本题答案为:x1=1,x2=﹣1.
    【点睛】
    本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
    13、A
    【解析】
    根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
    【详解】
    如图,

    ∵点A坐标为(-2,2),
    ∴k=-2×2=-4,
    ∴反比例函数解析式为y=-,
    ∵OB=AB=2,
    ∴△OAB为等腰直角三角形,
    ∴∠AOB=45°,
    ∵PQ⊥OA,
    ∴∠OPQ=45°,
    ∵点B和点B′关于直线l对称,
    ∴PB=PB′,BB′⊥PQ,
    ∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
    ∴B′P⊥y轴,
    ∴点B′的坐标为(- ,t),
    ∵PB=PB′,
    ∴t-2=|-|=,
    整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
    ∴t的值为.
    故选A.
    【点睛】
    本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
    14、1.88×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:把18800000000用科学记数法表示为1.88×1,
    故答案为:1.88×1.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    15、x(9﹣x)
    【解析】
    试题解析:
    故答案为
    点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
    16、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】

    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
    17、
    【解析】
    连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
    【详解】
    解:连接CD,
    ∵DE垂直平分AC,
    ∴AD=CD,
    ∴∠DCA=∠BAC=45°,
    ∴△ADC是等腰直角三角形,
    ∴,∠ADC=90°,
    ∴∠BDC=90°,
    ∵∠ACB=75°,
    ∴∠BCD=30°,
    ∴BC= ,
    故答案为.

    【点睛】
    此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形

    三、解答题(共7小题,满分69分)
    18、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元.
    【解析】
    试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50-m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.
    试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元
    ,解得
    (2) 设第二次购买A种足球m个,则购买B种足球(50-m)个
    ,解得25≤m≤27
    ∵m为整数 ∴m=25、26、27
    (3) ∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72
    ∴当购买B种足球越多时,费用越高 此时25×54+25×72=3150(元)
    19、(1)见解析;(1)见解析.
    【解析】
    (1)由全等三角形的判定定理AAS证得结论.
    (1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.
    【详解】
    解:(1)证明:如图,∵四边形ABCD是平行四边形,
    ∴AD∥BC.

    又∵点F在CB的延长线上,
    ∴AD∥CF.
    ∴∠1=∠1.
    ∵点E是AB边的中点,
    ∴AE=BE,
    ∵在△ADE与△BFE中,,
    ∴△ADE≌△BFE(AAS).
    (1)CE⊥DF.理由如下:
    如图,连接CE,
    由(1)知,△ADE≌△BFE,
    ∴DE=FE,即点E是DF的中点,∠1=∠1.
    ∵DF平分∠ADC,
    ∴∠1=∠2.
    ∴∠2=∠1.
    ∴CD=CF.
    ∴CE⊥DF.
    20、 (1)证明见解析;(2) PD=8-t,运动时间为秒时,四边形PBQD是菱形.
    【解析】
    (1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    【详解】
    (1)∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠PDO=∠QBO,
    又∵O为BD的中点,
    ∴OB=OD,
    在△POD与△QOB中,

    ∴△POD≌△QOB,
    ∴OP=OQ;
    (2)PD=8-t,
    ∵四边形PBQD是菱形,
    ∴BP=PD= 8-t,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,
    即62+t2=(8-t)2,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    【点睛】
    本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.
    21、 (1)k=-,b=1;(1) (0,1)和
    【解析】
    分析:(1) 由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.
    详解:(1) 由直线经过点,可得.
    由抛物线的对称轴是直线,可得.
    ∵直线与x轴、y轴分别相交于点、,
    ∴点的坐标是,点的坐标是.
    ∵抛物线的顶点是点,∴点的坐标是.
    ∵点是轴上一点,∴设点的坐标是.
    ∵△BCG与△BCD相似,又由题意知,,
    ∴△BCG与△相似有两种可能情况:
    ①如果,那么,解得,∴点的坐标是.
    ②如果,那么,解得,∴点的坐标是.
    综上所述:符合要求的点有两个,其坐标分别是和 .
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴ ,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.
    当a=-1时,=;
    当a=1时,=;
    ∴点的坐标是或.

    点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.
    22、 (1);(2)m=﹣.
    【解析】
    (1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;
    (2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.
    【详解】
    (1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,
    ∴△=22﹣4×1×2m=4﹣8m>0,
    解得:
    即m的取值范围是
    (2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
    ∴x1+x2=﹣2,x1•x2=2m,
    ∵x12+x22﹣x1x2=8,
    ∴(x1+x2)2﹣3x1x2=8,
    ∴(﹣2)2﹣3×2m=8,
    解得:
    【点睛】
    本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.
    23、(1)见解析;(2)2 (3)1
    【解析】
    (1)通过证明∠BED=∠DBE得到DB=DE;
    (2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
    (3)证明△DBF∽△ADB,然后利用相似比求AD的长.
    【详解】
    (1)证明:∵AD平分∠BAC,BE平分∠ABD,
    ∴∠1=∠2,∠3=∠4,
    ∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
    ∴DB=DE;
    (2)解:连接CD,如图,

    ∵∠BAC=10°,
    ∴BC为直径,
    ∴∠BDC=10°,
    ∵∠1=∠2,
    ∴DB=BC,
    ∴△DBC为等腰直角三角形,
    ∴BC=BD=4,
    ∴△ABC外接圆的半径为2;
    (3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
    ∴△DBF∽△ADB,
    ∴=,即=,
    ∴AD=1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
    24、(1)见解析;(2)见解析;(3)AG=1.
    【解析】
    (1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
    (2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
    (3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
    【详解】
    (1)证明:连结OC,如图,
    ∵C是劣弧AE的中点,
    ∴OC⊥AE,
    ∵CG∥AE,
    ∴CG⊥OC,
    ∴CG是⊙O的切线;
    (2)证明:连结AC、BC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠2+∠BCD=90°,
    而CD⊥AB,
    ∴∠B+∠BCD=90°,
    ∴∠B=∠2,
    ∵C是劣弧AE的中点,
    ∴,
    ∴∠1=∠B,
    ∴∠1=∠2,
    ∴AF=CF;
    (3)解:∵CG∥AE,
    ∴∠FAD=∠G,
    ∵sinG=0.6,
    ∴sin∠FAD==0.6,
    ∵∠CDA=90°,AF=CF=4,
    ∴DF=2.4,
    ∴AD=3.2,
    ∴CD=CF+DF=6.4,
    ∵AF∥CG,
    ∴,

    ∴DG=,
    ∴AG=DG﹣AD=1.

    【点睛】
    本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.

    相关试卷

    北京市三十一中学2022年中考数学对点突破模拟试卷含解析: 这是一份北京市三十一中学2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届重庆清化中学中考数学对点突破模拟试卷含解析: 这是一份2022届重庆清化中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,,,则的大小是等内容,欢迎下载使用。

    2022届北京市怀柔区中考数学对点突破模拟试卷含解析: 这是一份2022届北京市怀柔区中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了已知,2016的相反数是,已知,,且,则的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map