湖南省衡阳市第八中学2024-2025学年高二上学期开学考试数学试卷(原卷版)
展开数学试题
时量:120分钟 分值:150分
命题人:周福、彭婧涵 审题人:赵耀华
一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.
1. 已知集合,则( )
A. B. C. D.
2. 已知复数满足,则复数( )
A. B.
C. D.
3. 如图,中,为边的中点,为的中点,则( )
A. B.
C. D.
4. 下列方程中表示圆心在直线 上,半径为 2,且过原点的圆的是 ( )
A. B.
C. D.
5. 将函数的图象先向左平移个单位,纵坐标不变,再将横坐标伸长为原来的2倍,得到函数的图象,则函数的解析式为( )
A. B.
C D.
6. 已知函数,关于的方程有4个不同的实数根,则实数的取值范围是( )
A. B.
C. D.
7. 如图,在平面四边形ABCD中,若,,,,则( )
A. B. 2C. D.
8. 在中,,,,为中点,若将沿着直线翻折至,使得四面体的外接球半径为,则直线与平面所成角的正弦值是( )
A. B. C. D.
二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9. 设,为两个随机事件,以下命题正确是( )
A. 若,是对立事件,则
B. 若,是互斥事件,,,则
C. 若,,且,则,是独立事件
D. 若,是独立事件,,,则
10. 以下四个命题叙述正确的是( )
A. 直线在轴上的截距是1
B. 直线和的交点为,且在直线上,则的值是
C. 设点是直线上的动点,为原点,则的最小值是2
D. 直线,若,则或2
11. 已知正方体的边长为2,M为的中点,P为侧面上的动点,且满足平面,则下列结论正确的是( )
A. B. 平面
C. 与所成角的余弦值为D. 动点P的轨迹长为
三、填空题:本题共3小题,每小题5分,共15分.
12. 对任意的实数,直线所过的定点为__________.
13. 如图,已知正方形边长为4,若动点在以为直径的半圆(正方形内部,含边界),则的取值范围为_____.
14. 函数的值域为______.
三、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.
15. 已知直线,.
(1)若坐标原点O到直线m的距离为,求a的值;
(2)当时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程.
16. 记的内角的对边分别为,满足.
(1)求角;
(2)若,,是中线,求的长.
17. 文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者,某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:,得到如图所示的频率分布直方图.
(1)求频率分布直方图中的值,并求样本成绩的第80百分位数;
(2)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数和总方差.
18. 如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;
(2)已知PD=AD=1,Q为l上点,求PB与平面QCD所成角的正弦值的最大值.
19. 一般地,元有序实数对称为维向量.对于两个维向量,定义:两点间距离,利用维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离,与哪个标准点的距离最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值、管理能力分值、计算机能力分值、沟通能力分值(分值代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:
对应聘者能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量的四个坐标.
(1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;
(2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方均小于20的应聘者才能被招录.
(i)小刚测试报告上的四种能力分值为,将这组数据看成四维向量中的一个点,将四种职业的分值要求看成样本点,分析小刚最适合哪个岗位;
(ii)小明已经被该公司招录,其测试报告经公司计算得到四种职业的推荐率分别为,试求小明的各项能力分值.
岗位
业务能力分值
管理能力分值
计算机能力分值
沟通能力分值
合计分值
会计(1)
2
1
5
4
12
业务员(2)
5
2
3
5
15
后勤(3)
2
3
5
3
13
管理员(4)
4
5
4
4
17
湖南省衡阳市第八中学2024-2025学年高二上学期开学考试数学试卷(解析版): 这是一份湖南省衡阳市第八中学2024-2025学年高二上学期开学考试数学试卷(解析版),共20页。试卷主要包含了单项选择题,多项选择题,填空题等内容,欢迎下载使用。
安徽省六安市独山中学2024-2025学年高二上学期开学考试数学试卷(原卷版): 这是一份安徽省六安市独山中学2024-2025学年高二上学期开学考试数学试卷(原卷版),共4页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
河北省邯郸市2024-2025学年高二上学期开学考试数学试卷(原卷版): 这是一份河北省邯郸市2024-2025学年高二上学期开学考试数学试卷(原卷版),共4页。试卷主要包含了请将答案正确填写在答题卡上等内容,欢迎下载使用。