三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(理)(九大考点)(原卷版)
展开这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题04 立体几何(理)(九大考点)(原卷版),共15页。
考点1:三视图
1.(2022年高考全国甲卷数学(理)真题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )
A.8B.12C.16D.20
2.(2022年新高考浙江数学高考真题)某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是( )
A.B.C.D.
3.(2023年高考全国乙卷数学(理)真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )
A.24B.26C.28D.30
考点2:空间几何体表面积、体积、侧面积
4.(多选题)(2023年新课标全国Ⅱ卷数学真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
5.(多选题)(2022年新高考全国II卷数学真题)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )
A.B.
C.D.
6.(2022年新高考天津数学高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为( )
A.23B.24C.26D.27
7.(2024年高考全国甲卷数学(理)真题)已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,,则圆台甲与乙的体积之比为 .
8.(2023年天津高考数学真题)在三棱锥中,点M,N分别在棱PC,PB上,且,,则三棱锥和三棱锥的体积之比为( )
A.B.C.D.
9.(2022年高考全国甲卷数学(理)真题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )
A.B.C.D.
10.(2023年高考全国乙卷数学(理)真题)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为( )
A.B.C.D.
11.(2023年高考全国甲卷数学(理)真题)已知四棱锥的底面是边长为4的正方形,,则的面积为( )
A.B.C.D.
12.(2024年天津高考数学真题)一个五面体.已知,且两两之间距离为1.并已知.则该五面体的体积为( )
A.B.C.D.
13.(2023年北京高考数学真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为( )
A.B.
C.D.
14.(2024年新课标全国Ⅰ卷数学真题)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为( )
A.B.C.D.
考点3:空间直线、平面位置关系的判断
15.(2024年天津高考数学真题)若为两条不同的直线,为一个平面,则下列结论中正确的是( )
A.若,,则B.若,则
C.若,则D.若,则与相交
16.(2024年高考全国甲卷数学(理)真题)设为两个平面,为两条直线,且.下述四个命题:
①若,则或 ②若,则或
③若且,则 ④若与,所成的角相等,则
其中所有真命题的编号是( )
A.①③B.②④C.①②③D.①③④
17.(2022年高考全国乙卷数学(理)真题)在正方体中,E,F分别为的中点,则( )
A.平面平面B.平面平面
C.平面平面D.平面平面
考点4:线线角与线面角问题
18.(2022年高考全国甲卷数学(理)真题)在四棱锥中,底面.
(1)证明:;
(2)求PD与平面所成的角的正弦值.
19.(2022年高考全国乙卷数学(理)真题)如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
20.(2022年新高考北京数学高考真题)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
21.(2022年新高考浙江数学高考真题)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
22.(2023年高考全国甲卷数学(理)真题)如图,在三棱柱中,底面ABC,,到平面的距离为1.
(1)证明:;
(2)已知与的距离为2,求与平面所成角的正弦值.
23.(2022年高考全国甲卷数学(理)真题)在长方体中,已知与平面和平面所成的角均为,则( )
A.B.AB与平面所成的角为
C.D.与平面所成的角为
24.(2022年新高考浙江数学高考真题)如图,已知正三棱柱,E,F分别是棱上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则( )
A.B.C.D.
25.(2023年高考全国乙卷数学(理)真题)已知为等腰直角三角形,AB为斜边,为等边三角形,若二面角为,则直线CD与平面ABC所成角的正切值为( )
A.B.C.D.
26.(2024年新课标全国Ⅱ卷数学真题)已知正三棱台的体积为,,,则与平面ABC所成角的正切值为( )
A.B.1C.2D.3
27.(多选题)(2022年新高考全国I卷数学真题)已知正方体,则( )
A.直线与所成的角为B.直线与所成的角为
C.直线与平面所成的角为D.直线与平面ABCD所成的角为
考点5:外接球、内切球问题
28.(2023年高考全国甲卷数学(理)真题)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有 个公共点.
29.(2022年新高考全国II卷数学真题)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )
A.B.C.D.
考点6:立体几何中的范围与最值问题及定值问题
30.(多选题)(2023年新课标全国Ⅰ卷数学真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
31.(2022年新高考全国I卷数学真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A.B.C.D.
32.(2022年高考全国乙卷数学(理)真题)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为( )
A.B.C.D.
考点7:距离问题
33.(2024年北京高考数学真题)如图,在四棱锥中,底面是边长为4的正方形,,,该棱锥的高为( ).
A.1B.2C.D.
考点8:立体几何存在性问题
34.(2024年新课标全国Ⅰ卷数学真题)如图,四棱锥中,底面ABCD,,.
(1)若,证明:平面;
(2)若,且二面角的正弦值为,求.
35.(2023年新课标全国Ⅰ卷数学真题)如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;
(2)点在棱上,当二面角为时,求.
考点9:二面角问题
36.(2024年高考全国甲卷数学(理)真题)如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,,,,为的中点.
(1)证明:平面;
(2)求二面角的正弦值.
37.(2024年新课标全国Ⅱ卷数学真题)如图,平面四边形ABCD中,,,,,,点E,F满足,,将沿EF翻折至,使得.
(1)证明:;
(2)求平面PCD与平面PBF所成的二面角的正弦值.
38.(2024年北京高考数学真题)如图,在四棱锥中,,,,点在上,且,.
(1)若为线段中点,求证:平面.
(2)若平面,求平面与平面夹角的余弦值.
39.(2024年天津高考数学真题)已知四棱柱中,底面为梯形,,平面,,其中.是的中点,是的中点.
(1)求证平面;
(2)求平面与平面的夹角余弦值;
(3)求点到平面的距离.
40.(2023年北京高考数学真题)如图,在三棱锥中,平面,.
(1)求证:平面PAB;
(2)求二面角的大小.
41.(2023年高考全国乙卷数学(理)真题)如图,在三棱锥中,,,,,BP,AP,BC的中点分别为D,E,O,,点F在AC上,.
(1)证明:平面;
(2)证明:平面平面BEF;
(3)求二面角的正弦值.
42.(2023年新课标全国Ⅱ卷数学真题)如图,三棱锥中,,,,E为BC的中点.
(1)证明:;
(2)点F满足,求二面角的正弦值.
43.(2022年新高考天津数学高考真题)直三棱柱中,,D为的中点,E为的中点,F为的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)求平面与平面夹角的余弦值.
44.(2022年新高考全国II卷数学真题)如图,是三棱锥的高,,,E是的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
45.(2023年天津高考数学真题)如图,在三棱台中,平面,为中点.,N为AB的中点,
(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
考点
三年考情(2022-2024)
命题趋势
考点1:三视图
2022年浙江卷、2022年全国甲卷(理)
2023年全国乙卷(理)
从近三年高考命题来看,本节是高考的一个重点,立体几何是高考的必考内容,重点关注以下几个方面:
(1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;
(2)多面体和球体的相关计算问题是近三年考查的重点;
(3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.
(4)能够理解空间向量的概念、运算、背景和作用;能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的程序化思想.考查重点是解决空间线线角、线面角、二面角的问题求解.
考点2:空间几何体表面积、体积、侧面积
2023年全国Ⅱ卷、2022年全国II卷
2022年天津卷、2023年天津卷
2024年全国甲卷(理)、2022年全国甲卷(理)
2023年全国乙卷(理)、2023年全国甲卷(理)
2024年天津卷、2023年北京卷
2024年全国Ⅰ卷
考点3:空间直线、平面位置关系的判断
2024年天津卷、2024年全国甲卷(理)
2022年全国乙卷(理)
考点4:线线角与线面角问题
2022年全国甲卷(理)
2022年全国乙卷(理)
2022年北京卷、2022年浙江卷
2023年全国甲卷(理)
2022年全国甲卷(理)
2022年浙江卷、2023年全国乙卷(理)
2024年全国Ⅱ卷、2022年全国I卷
考点5:外接球、内切球问题
2023年全国甲卷(理)、2022年全国II卷
考点6:立体几何中的范围与最值问题及定值问题
2023年全国Ⅰ卷、2022年全国I卷
2022年全国乙卷(理)
考点7:距离问题
2024年北京卷
考点8:立体几何存在性问题
2024年全国Ⅰ卷、2023年全国Ⅰ卷
考点9:二面角问题
2024年全国甲卷(理)
2024年全国Ⅱ卷、2024年北京卷
2024年天津卷、2023年北京卷
2023年全国乙卷(理)
2023年全国Ⅱ卷、2022年天津卷
2022年全国II卷、2023年天津卷
相关试卷
这是一份三年(2022-2024)高考数学真题分类汇编(全国通用)专题02 函数的概念与基本初等函数Ⅰ(八大考点)(原卷版),共7页。试卷主要包含了若为偶函数,则 等内容,欢迎下载使用。
这是一份专题13 计数原理(理) (三大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题13计数原理理三大考点原卷版docx、专题13计数原理理三大考点解析版docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份专题12 概率与统计(理)(十大考点)-【好题汇编】三年(2022-2024)高考数学真题分类汇编(全国通用),文件包含专题12概率与统计理十大考点原卷版docx、专题12概率与统计理十大考点解析版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。