|试卷下载
搜索
    上传资料 赚现金
    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版)
    立即下载
    加入资料篮
    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版)01
    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版)02
    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版)03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版)

    展开
    这是一份黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(解析版),共13页。试卷主要包含了 设向量,,若,则, 已知,则, 已知向量,,若,则m的值为, 已知复数满足,则复数, 在中,角的对边分别为, 若复数,则下列说法正确的是等内容,欢迎下载使用。

    出题人:杨彦思
    一、单选题
    1. 设向量,,若,则( )
    A. B. 0C. 6D.
    【答案】D
    【解析】
    【分析】直接利用平面向量共线的坐标运算列式求解值.
    【详解】向量,,若,
    则,解得.
    故选:D.
    2. 已知,则( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据复数的四则运算可得,进而可得.
    【详解】由,
    所以,
    故选:B.
    3. 已知向量,,若,则m的值为( )
    A. 2B. 1C. D.
    【答案】D
    【解析】
    【分析】由向量垂直的坐标表示列方程等于零求解,可得结论.
    【详解】根据题意知,,,
    则,解之可得
    故选:D
    4. 如图,已知正三棱柱为的中点,则与所成角的余弦值为( )

    A 1B. C. D.
    【答案】B
    【解析】
    【分析】取的中点,则(或其补角)为异面直线与所成角,解三角形即可求解.
    【详解】如图,取的中点,连接、,易知,

    所以异面直线与所成角就是直线与直线所成的角,即(或其补角),
    由题意可知正三棱柱的所有棱长都相等,
    可设三棱柱的棱长都为,则,,,
    因为,所以为直角三角形,
    所以
    即异面直线与所成角的余弦值为.
    故选:.
    5. 已知一组数据为2,5,7,8,9,12,则这组数据的分位数为( )
    A. 9B. C. 8D. 7
    【答案】A
    【解析】
    【分析】利用百分位数的求解公式即可求解.
    【详解】因为,
    所以这组数据的分位数是第5个数,即为9.
    故选:A.
    6. 已知复数满足,则复数( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】由已知等式化简求出,从而可求出复数.
    【详解】因为,
    所以.
    故选:D.
    7. 在中,角的对边分别为.已知,则( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】利用余弦定理计算可得.
    【详解】由余弦定理可得.
    故选:B
    8. 若正三棱柱的所有棱长均为,且其侧面积为12,则此三棱柱外接球的表面积是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据三棱柱侧面积公式求出,确定球心的位置,如图构造直角三角形,由勾股定理求出外接球半径的平方,再根据球的表面积公式即可求解.
    【详解】由题意可得,正棱柱的底面是边长和高都等于的等边三角形,侧面积为,
    ∴,∴,
    取三棱柱的两底面中心,连结,
    取的中点,则为三棱柱外接球的球心,
    连结,则为三棱柱外接球的半径.
    ∵是边长为的正三角形,是的中心,
    ∴.
    又∵
    ∴.
    ∴三棱柱外接球的表面积.
    故选:B.

    二、多选题
    9. 若复数,则下列说法正确的是( )
    A. 在复平面内对应的点在第四象限B. 的虚部为
    C. D. 的共轭复数
    【答案】AD
    【解析】
    【分析】利用复数的几何意义判断A;求出复数的虚部判断B;求出复数的平方判断C;求出共轭复数判断D作答.
    【详解】对于A,复数在复平面内对应的点在第四象限,A正确;
    对于B,的虚部为,B错误;
    对于C,,C错误;
    对于D,的共轭复数,D正确.
    故选:AD
    10. 在空间中,已知a,b是两条不同的直线,,是两个不同的平面,则下列选项中正确的是( )
    A. 若,且,,,则
    B. 若,且,,则
    C. 若a与b相交,且,,则与相交
    D. 若,且,,则
    【答案】AC
    【解析】
    【分析】利用空间线线、线面、面面平行和垂直的判定定理和性质定理分析判断即可
    【详解】若,且,,即两平面的法向量平行,则成立,故A正确;
    若,且,,则a与b互相平行或相交或异面,故B错误;
    若a,b相交,且,,即两平面的法向量相交,则,相交成立,故C正确;
    若,且,,则与平行或相交,故D错误;
    故选:AC.
    【点睛】此题考查空间线线、线面、面面平行和垂直的判定定理和性质定理的应用,属于基础题
    11. 已知圆锥的底面半径为1,其母线长是2,则下列说法正确的是( )
    A. 圆锥的高是B. 圆锥侧面展开图的圆心角为
    C. 圆锥的表面积是D. 圆锥的体积是
    【答案】AC
    【解析】
    【分析】根据圆锥及侧面展开图的性质,表面积公式,体积公式求解判断即可.
    【详解】圆锥的底面半径为,其母线长是,
    则圆锥的高,故A正确;
    设圆锥侧面展开图圆心角为,则,解得,故B错误;
    圆锥的表面积是,故C正确;
    圆锥的体积是,故D错误.
    故选:AC.
    三、填空题
    12. 在中,角A,B,C所对的边分别为a,b,c.若,,,则______.
    【答案】
    【解析】
    【分析】由已知利用三角形内角和定理可求A,根据正弦定理即可求的值.
    【详解】在中,因为,,,则,
    由正弦定理,可得:.
    故答案为:.
    13. 已知球的半径为3,则该球的表面积等于__________,则该球的体积等于__________
    【答案】 ①. ②.
    【解析】
    【分析】根据球的表面积公式和体积公式直接求解即可.
    【详解】因为球的半径为3,
    所以球的表面积为,体积为.
    故答案为:,
    14. 某校高一年级有1200名学生,高二年级有1000名学生,高三年级有800名学生,现要从该校全体学生中抽取100人进行视力检查,应从高一年级抽取__________人
    【答案】40
    【解析】
    【分析】高一年级人数乘以抽样比即可.
    【详解】由题意,应从高一年级抽取的人数为:.
    故答案为:40.
    四、解答题
    15. 已知向量,满足,且.
    (1)求向量,夹角;
    (2)求.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据数量积运算律得出,再根据夹角公式得夹角的余弦值,即可求出结果;
    (2)根据条件及(1)中结果,利用数量积的运算性质,即可求出结果.
    【小问1详解】
    由,得到,又,
    所以,得到,
    所以,又,所以
    【小问2详解】
    由(1)知,又,
    所以,
    所以.
    16. 已知内角的对边分别为,设.
    (1)求;
    (2)若的面积为,求的值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据题意,由正弦定理的边角互化进行化简,结合余弦定理即可得到结果;(2)根据题意,由三角形的面积公式可得,结合余弦定理即可得到结果.
    【小问1详解】
    原式化简可得:,
    整理得:,
    由正弦定理可得:,
    因此三角形的内角;
    【小问2详解】



    .
    17. 某公司为了解员工对食堂的满意程度,随机抽取了200名员工做了一次问卷调查,要求员工对食堂的满意程度进行打分,所得分数均在内,现将所得数据分成6组:,,,,,,并得到如图所示的频率分布直方图.
    (1)求的值,并估计这200名员工所得分数的平均数(同一组中的数据用该组区间的中点值代表);
    (2)求这200名员工所得分数的中位数(精确到0.1);
    (3)现从,,这三组中用比例分配的分层随机抽样的方法抽取24人,求这组中抽取的人数.
    【答案】(1),
    (2)72.9 (3)
    【解析】
    【分析】(1)根据小矩形面积和为1得到关于的方程,解出值,再利用频率分布直方图中平均数公式即可;
    (2)首先确定中位数所在区间,再设中位数为,列出方程,解出即可;
    (3)求出各区间人数,再根据分层抽样的特点即可得到答案.
    【小问1详解】
    由题意知,
    解得.
    估计这200名员工所得分数的平均数

    .
    【小问2详解】
    频率为,
    的频率为,
    所以中位数落在区间,设中位数为,
    所以,
    解得,即估计这200名员工所得分数的中位数为72.9.
    【小问3详解】
    的人数:,
    的人数:,
    的人数:,
    所以这组中抽取的人数为:.
    18. 如图,在正方体中,
    (1)求证:平面;
    (2)求证:.
    【答案】(1)证明见解析
    (2)证明见解析
    【解析】
    【分析】(1)根据正方体的性质得到,即可得证;
    (2)根据正方体的性质得到、,即可证明平面,从而得证.
    【小问1详解】
    在正方体中,
    又平面,平面,所以平面;
    【小问2详解】
    连接、,在正方体中为正方形,
    所以,
    又平面,平面,所以,
    又,平面,
    所以平面,又平面,所以.
    19. 在正三棱柱中,为棱的中点,如图所示.
    (1)求证:平面;
    (2)若二面角的大小为,求直线和平面所成角的正弦值.
    【答案】(1)证明见解析
    (2)
    【解析】
    【分析】(1)连接,设,连接,结合三角形中位线证得线线平行,利用线面平行判定定理得证;
    (2)由正三棱柱,得平面,从而得到,,证得平面,二面角定义得到二面角的平面角是,作,连接,因为平面平面,得到平面,找到直线和平面所成的角为,计算得到结果;
    【小问1详解】
    证明:连接,设,连接,
    在中,,,∴,
    又平面,平面,
    ∴平面.
    【小问2详解】
    由正三棱柱,可得平面,
    ∵平面,∴,∵为的中点,∴,
    又,,平面,
    故平面,
    而,平面,故,,
    ∴二面角的平面角是,
    在平面内作,连接,
    ∵平面,∴平面平面,
    又平面平面,平面,
    故平面,
    ∴直线和平面所成的角为,
    又平面,∴,
    ∴,
    ∴直线和平面所成角的正弦值为.
    相关试卷

    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(原卷版): 这是一份黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(原卷版),共4页。试卷主要包含了 已知,则, 已知向量,,若,则m的值为, 已知复数满足,则复数, 在中,角的对边分别为, 若复数,则下列说法正确的是等内容,欢迎下载使用。

    黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(原卷版+解析版): 这是一份黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷(原卷版+解析版),文件包含黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷原卷版docx、黑龙江省绥化市第二中学2024-2025学年高二上学期开学考数学试卷解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    安徽省无为中学2024-2025学年高二上学期开学考试数学试卷: 这是一份安徽省无为中学2024-2025学年高二上学期开学考试数学试卷,共4页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map