重庆市宜宾市中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】
展开这是一份重庆市宜宾市中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】,共19页。试卷主要包含了下列命题中的真命题是等内容,欢迎下载使用。
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.眉山市某初级中学连续多年开设第二兴趣班.经测算,前年参加的学生中,参加艺术类兴趣班的学生占,参加体育类的学生占,参加益智类的学生占;去年参加的学生中,参加艺术类兴趣班的学生占,参加体育类的学生占,参加益智类的学生占(如图).下列说法正确的是( )
A.前年参加艺术类的学生比去年的多B.去年参加体育类的学生比前年的多
C.去年参加益智类的学生比前年的多D.不能确定参加艺术类的学生哪年多
2.如图,CD⊥AB于点D,点E在CD上,下列四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,将其中两个作为条件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
3.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是( )
A.10% B.20% C.30% D.40%
4.下列交通标识中,是轴对称图形的是( )
A.B.C.D.
5.一个多边形的内角和是900°,则这个多边形的边数为 ( )
A.6B.7C.8D.9
6.下列命题中的真命题是( )
A.锐角大于它的余角B.锐角大于它的补角
C.钝角大于它的补角D.锐角与钝角之和等于平角
7.已知线段 a=2cm,b=4cm,则下列长度的线段中,能与 a,b组成三角形的是( )
A.2cmB.4cmC.6cmD.8cm
8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )
A.16B.18C.20D.16或20
9.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
A.各项消费金额占消费总金额的百分比
B.各项消费的金额
C.消费的总金额
D.各项消费金额的增减变化情况
10.如图,若BC=EC,∠BCE=∠ACD,则添加不能使△ABC≌△DEC的条件是( )
A.B.C.D.
11.下图是北京世界园艺博览会园内部分场馆的分布示意图,在图中,分别以正东、正北方向为轴、轴的正方向建立平向直角坐标系,如果表示演艺中心的点的坐标为,表示水宁阁的点的坐标为,那么下列各场馆的坐标表示正确的是( )
A.中国馆的坐标为
B.国际馆的坐标为
C.生活体验馆的坐标为
D.植物馆的坐标为
12.△ABC的三边长分别a、b、c,且a+2ab=c+2bc,△ABC是( )
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
二、填空题(每题4分,共24分)
13.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.
14.计算:=__________.
15.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x(时)之间的函数关系式是____________;
16.若二次根式是最简二次根式,则最小的正整数为______.
17.将一副三角板按如图所示摆放,使点A在DE上,BC∥DE,其中∠B=45°,∠D=60°,则∠AFC的度数是_____.
18.如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是__________.
三、解答题(共78分)
19.(8分)阅读下列材料:
在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x的分式方程的解为正数,求a的取值范围?
经过小组交流讨论后,同学们逐渐形成了两种意见:
小明说:解这个关于x的分式方程,得到方程的解为x=a﹣1.由题意可得a﹣1>0,所以a>1,问题解决.
小强说:你考虑的不全面.还必须保证a≠3才行.
老师说:小强所说完全正确.
请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明: .
完成下列问题:
(1)已知关于x的方程=1的解为负数,求m的取值范围;
(1)若关于x的分式方程=﹣1无解.直接写出n的取值范围.
20.(8分)已知:如图,AB=AC,AD=AE,∠1=∠1.求证:△ABD≌△ACE.
21.(8分)如图1,在和中, ,, .
(1)若三点在同一直线上,连接交于点,求证: .
(2)在第(1)问的条件下,求证: ;
(3)将绕点顺时针旋转得到图2,那么第(2)问中的结论是否依然成立?若成立,请证明你的结论:若不成立,请说明理由.
22.(10分)南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.
(1)求甲、乙两种兰花每株成本分别为多少元?
(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?
23.(10分)如图,Rt△ABC中,∠ACB=90°.
(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的条件下,若BD=5,CD=3,求AC的长.
24.(10分)(1)计算:-|-3|+(-2018)0+(-2)2019×
(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).
25.(12分)如图,在平面直角坐标系中,点为坐标原点,的顶点、的坐标分别为,,并且满足,.
(1)求、两点的坐标.
(2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示.
26.(1)如图(a),平分,平分.
①当时,求的度数.
②猜想与有什么数量关系?并证明你的结论.
(2)如图(b),平分外角,平分外角,(1)中②的猜想还正确吗?如果不正确,请你直接写出正确的结论(不用写出证明过程).
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】在比较各部分的大小时,必须在总体相同的情况下才能比较,所以无法确定参加艺术类的学生哪年多.
【详解】解:眉山市某初级中学参加前年和去年的兴趣班的学生总人数不一定相同,所以无法确定参加各类活动的学生哪年多.
故选D.
【点睛】
本题考查了扇形统计图.扇形统计图直接反映部分占总体的百分比大小,但是在比较各部分的大小时,必须在总体相同的情况下才能比较.
2、C
【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.
【详解】A:∵CD⊥AB
∴∠CDA=∠BDE
又∵AD=ED;②∠A=∠BED
∴△ADC≌△EDB(ASA)
所以A能判断二者全等;
B:∵CD⊥AB
∴△ADC与△EDB为直角三角形
∵AD=ED,AC=EB
∴△ADC≌△EDB(HL)
所以B能判断二者全等;
C:根据三个对应角相等无法判断两个三角形全等,
所以C不能判断二者全等;
D:∵CD⊥AB
∴∠CDA=∠BDE
又∵∠A=∠BED,AC=EB
∴△ADC≌△EDB(AAS)
所以D能判断二者全等;
所以答案为C选项.
【点睛】
本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.
3、A
【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.
【详解】根据题意得:40-(12+10+6+8)=40-36=4,
则第5组所占的百分比为4÷40=0.1=10%,
故选A.
【点睛】
此题考查了频数与频率,弄清题中的数据是解本题的关键.
4、B
【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B
5、B
【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.
【详解】解:设这个多边形的边数为n,
则有(n-2)180°=900°,
解得:n=1,
∴这个多边形的边数为1.
故选B.
【点睛】
本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.
6、C
【详解】A、锐角大于它的余角,不一定成立,故本选项错误;
B、锐角小于它的补角,故本选项错误;
C、钝角大于它的补角,本选项正确;
D、锐角与钝角之和等于平角,不一定成立,故本选项错误.
故选C.
7、B
【分析】利用三角形三边关系判断即可,两边之和第三边两边之差.
【详解】解:,,
第三边
能与,能组成三角形的是,
故选.
【点睛】
考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和较大的边,则能组成三角形,否则,不可以.
8、C
【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.
【详解】①当4为腰时,4+4=8,故此种情况不存在;
②当8为腰时,8-4<8<8+4,符合题意.
故此三角形的周长=8+8+4=1.
故选C
【点睛】
本题考查了等腰三角形的性质及三角形三边关系,分情况分析师解题的关键.
9、A
【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,
【详解】解:从图中可以看出各项消费金额占消费总金额的百分比.
故选A.
10、A
【分析】由∠BCE=∠ACD可得∠ACB=∠DCE,结合BC=EC根据三角形全等的条件逐一进行分析判断即可.
【详解】∵∠BCE=∠ACD,
∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,
又∵BC=EC,
∴添加AB=DE时,构成SSA,不能使△ABC≌△DEC,故A选项符合题意;
添加∠B=∠E,根据ASA可以证明△ABC≌△DEC,故B选项不符合题意;
添加AC=DC,根据SAS可以证明△ABC≌△DEC,故C选项不符合题意;
添加∠A=∠D,根据AAS可以证明△ABC≌△DEC,故D选项不符合题意,
故选A.
【点睛】
本题考查了三角形全等的判定,准确识图,熟练掌握全等三角形的判定方法是解题的关键.
11、A
【分析】根据演艺中心的点的坐标为(1,2),表示水宁阁的点的坐标为(-4,1)确定坐标原点的位置,建立平面直角坐标系,进而可确定其它点的坐标.
【详解】解:根据题意可建立如下所示平面直角坐标系,
A、中国馆的坐标为(-1,-2),故本选项正确;
B、国际馆的坐标为(3,-1),故本选项错误;
C、生活体验馆的坐标为(7,4),故本选项错误;
D、植物馆的坐标为(-7,-4),故本选项错误.
故选A.
【点睛】
此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.
12、A
【详解】∵a+2ab=c+2bc,
∴(a-c)(1+2b)=0,
∴a=c,b=(舍去),
∴△ABC是等腰三角形.
故答案选A.
二、填空题(每题4分,共24分)
13、15.
【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.
【详解】∵正方形ABCD,
∴AD=CD,∠ADC=∠DAB=90°,
∵等边△CDE,
∴CD=DE,∠CDE=60°,
∴∠ADE=90°-60°=30°,
∴AD=DE,
∴∠DAE=∠AED=(180°-∠ADE)=75°;
∴∠EAB=90°-75°=15°.
故答案为:15°
【点睛】
本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
14、
【分析】先把除法转化为乘法,然后约分化简.
【详解】解:原式==.
故答案为:.
【点睛】
本题考查了分式的除法,分式的除法通常转化为分式的乘法来计算,分式除以分式,把除式的分子、分母颠倒位置后,再与被除式相乘,可简单理解为:除以一个数(或式)等于乘以这个数(或式)的倒数.
15、y=30-4x
【解析】试题解析:∵每小时耗油4升,
∵工作x小时内耗油量为4x,
∵油箱中有油30升,
∴剩余油量y=30-4x.
16、1
【分析】根据最简二次根式的定义求解即可.
【详解】解:∵a是正整数,且是最简二次根式,
∴当a=1时,,不是最简二次根式,
当a=1时,,是最简二次根式,
则最小的正整数a为1,
故答案为:1.
【点睛】
本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
17、75°
【分析】利用平行线的性质以及三角形的外角的性质求解即可.
【详解】解:∵BC∥DE,
∴∠FCB=∠E=30°,
∵∠AFC=∠B+∠FCB,∠B=45°,
∴∠AFC=45°+30°=75°,
故答案为75°.
【点睛】
本题考查三角形内角和定理,三角形的外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
18、
【解析】解:,,∴.又∵垂直平分,∴,.∵,∴,∴,,.由勾股定理可得.故答案为.
三、解答题(共78分)
19、(1):m<且m≠﹣;(1)n=1或n=.
【解析】考虑分式的分母不为0,即分式必须有意义;
(1)表示出分式方程的解,由解为负数确定出m的范围即可;
(1)分式方程去分母转化为整式方程,根据分式方程无解,得到有增根或整式方程无解,确定出n的范围即可.
【详解】请回答:小明没有考虑分式的分母不为0(或分式必须有意义)这个条件;
(1)解关于x的分式方程得,x=,
∵方程有解,且解为负数,
∴,
解得:m<且m≠-;
(1)分式方程去分母得:3-1x+nx-1=-x+3,即(n-1)x=1,
由分式方程无解,得到x-3=0,即x=3,
代入整式方程得:n=;
当n-1=0时,整式方程无解,此时n=1,
综上,n=1或n=.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
20、证明见解析.
【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS) 得出即可.
【详解】证明:∵∠1=∠1,
∴∠EAC=∠BAD,
在△DAB和△EAC中,
,
∴△ABD≌△ACE(SAS);
【点睛】
本题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.
21、(1)见解析;(2)见解析;(3)成立,理由见解析
【分析】(1)根据SAS得出△BAD≌△CAE;
(2)根据△BAD≌△CAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案;
(3)延长BD交CE于点M,交AC于点F.根据SAS证明ΔBAD≌ΔCAE,得出∠ABD=∠ACE,根据直角三角形两锐角互余和对顶角相等即可得出答案.
【详解】(1)∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴ΔBAD≌ΔCAE.
(2)∵ΔBAD≌ΔCAE,
∴∠ABD=∠ACE.
∵∠BAC=90°,
∴∠ABD+∠AFB=90°.
∵∠AFB=∠CFD,
∴∠ACE+∠CFD=90°,
∴∠CDF=90°,
∴BD⊥CE.
(3)成立.理由如下:
延长BD交CE于点M,交AC于点F.
∵∠BAC=∠DAE=90°,
∴∠BAC-∠CAD=∠DAE-∠CAD,
即∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴ΔBAD≌ΔCAE,
∴∠ABD=∠ACE.
∵∠BAC=90°,
∴∠ABD+∠AFB=90°.
∵∠AFB=∠CFM,
∴∠CMF=90°,
∴BD⊥CE.
【点睛】
本题考查了全等三角形的判定与性质和三角形内角和定理等知识,根据已知得出△BAD≌△CAE是解题的关键.
22、(1)每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;(2)最多购进甲种兰花20株.
【分析】(1)如果设每株乙种兰花的成本为x元,由“每株甲种兰花的成本比每株乙种兰花的成本多100元”,可知每株甲种兰花的成本为(x+100)元.题中有等量关系:用1200元购进的甲种兰花数量=用900元购进的乙种兰花数量,据此列出方程;
(2)设购进甲种兰花a株,根据乙种兰花的株数比甲种兰花的3倍还多10株,成本不超过30000元,列出不等式即可
【详解】(1)设每株乙种兰花的成本为x元,则每株甲种兰花的成本为(x+100)元
由题意得,
解得,x=300,
经检验x=300是分式方程的解,
∴x+100=300+100=400,
答:每株甲种兰花的成本为400元,每株乙种兰花的成本为300元;
(2)设购进甲种兰花a株
由题意得400a+300(3a+10)≤30000,
解得,a≤,
∵a是整数,
∴a的最大值为20,
答:最多购进甲种兰花20株.
【点睛】
此题考查一元一次不等式应用,分式方程的应用,解题关键在于列出方程
23、 (1)见解析;(2)6.
【分析】(1)先以A为圆心,小于AC长为半径画弧,交AC,AB运用H、F;再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,最后画射线AM交CB于D;
(2)过点D作DE⊥AB,垂足为E,先证明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE长,然后在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,最后再次运用勾股定理求解即可.
【详解】解:(1)如图:
(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°
∵AD平分∠BAC
∴CD=DE
在RtACD和RtAED中
CD=DE,AD=AD
∴ △CDE≌△AED(HL)
∴AC=AE,CD=DE=3
在Rt△BDE中,
由勾股定理得:DE2+BE2=BD2
∴BE2=BD2-DE2=52-32=16.
∴BE=4
在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.
由勾股定理得:AC2+BC2=AB2,即x2+82=(x+4)2
解得:x=6,即AC=6.
【点睛】
本题主要考查了作角平分线、以及角平分线的性质、勾股定理的应用、全等三角形的判定和性质.解题的关键在于作出角平分线并利用其性质证明三角形全等.
24、(1)1;(2)-6x+5y
【分析】(1)根据实数的混合运算法则进行计算即可得解;
(2)根据整式的混合运算法则进行计算即可得解.
【详解】(1)原式=
=4-3+1-1
=1;
(2)原式=
=
=
=.
【点睛】
本题主要考查了实数及整式的混合运算,熟练掌握相关运算法则是解决本题的关键.
25、(1)A(0,4),B(-3,0);(2)①当点P在线段BC上时,;②当点P在线段BC延长线上时,
【分析】(1)将代数式化简,利用非负性质求出a、b的值即可求出A、B的坐标.
(2)先求出C点坐标, 过点P作PM ⊥y轴,用t表示PM的长度,分别讨论P在BC上和P在BC延长线上的情况.
【详解】解:(1)∵ǀa-4|+b2+6b+9=0,
∴ a-4=0,b2+6b+9=(b+3)2=0,
∴ a=4, b=-3,
∴A(0,4),B(-3,0).
(2)由折叠可知C(0,-4),
∠BCO=∠BAO=30°,
∴OB=3,OC=4,
过点P作PM ⊥y轴,垂足为M,
∴.
①当点P在线段BC上时:
.
②当点P在线段BC延长线上时:
.
【点睛】
本题考查线段动点问题,关键在于结合图形,分类讨论.
26、(1)①120°;②;证明见解析;(2)不正确;
【分析】(1)①根据角平分线的定义以及三角形的内角和定理计算即可;
②结论:∠D=90°+∠A.根据角平分线的定义以及三角形的内角和定理计算即可;
(2)不正确.结论:∠D=90°-∠A.根据角平分线的定义以及三角形的内角和定理三角形的外角的性质计算即可.
【详解】解:(1)①,
,
,,
,
;
②结论:.
理由:,,
;
(2)不正确.结论:.
理由:,,
,
.
【点睛】
本题考查三角形内角和定理,三角形外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
相关试卷
这是一份重庆市渝中学区求精中学2023-2024学年八年级数学第一学期期末调研模拟试题【含解析】,共17页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的方程无解,则a的值是等内容,欢迎下载使用。
这是一份重庆市宜宾市中学2023-2024学年数学八上期末统考模拟试题【含解析】,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知,已知,,是的三条边长,则的值是等内容,欢迎下载使用。
这是一份重庆市宜宾市中学2023-2024学年数学八上期末复习检测模拟试题【含解析】,共20页。