运城市重点中学2023-2024学年数学八年级第一学期期末监测模拟试题【含解析】
展开注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A.B.5C.6D.8
2.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的( )
A.B.
C.D.
3.下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等;②三角形的一个外角大于任何一个内角;③如果和是对顶角,那么;④若,则.
A.1个B.2个C.3个D.4个
4.如图,在等腰三角形纸片中,,,折叠该纸片,使点落在点处,折痕为,则的度数是( )
A.B.C.D.
5.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是( )
A.(4,﹣1)B.(﹣1,3)C.(﹣1,﹣1)D.(1,3)
6.已知是方程2x-ay=5的一个解,则的值为( )
A.B.4C.25D.1
7.一个多边形内角和是,则这个多边形的边数为( )
A.B.C.D.
8.使分式有意义的的取值范是( )
A.B.C.D.
9.是一个完全平方式,则k等于( )
A.B.8C.D.4
10.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A.B.C.D.
11.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是( )
A.(﹣3,4)B.( 3,﹣4)C.(﹣4,3)D.( 4,﹣3)
12.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于( )
A.10B.8C.6或10D.8或10
二、填空题(每题4分,共24分)
13.3.145精确到百分位的近似数是____.
14.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.
15.计算的结果等于_______.
16.成人每天的维生素D的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________
17.已知是整数,则正整数n的最小值为___
18.如图,一系列“阴影梯形”是由轴、直线和过轴上的奇数,,,,,,所对应的点且与轴平行的直线围城的.从下向上,将面积依次记为,,,,(为正整数),则____,____.
三、解答题(共78分)
19.(8分)先化简,再求值.
,其中.
20.(8分)如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.
(1)求证:PM+PN=BC;
(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;
(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).
21.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.
(1)求两个服装店提供的单价分别是多少?
(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用()件服装,选择甲店则需要元,选择乙店则需要元,请分别求出,关于的函数关系式;
(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?
22.(10分)(1)计算:
①;
②
(2)因式分解:
①
②
(3)解方程:
①
②
23.(10分)△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y 轴对称的△A1B1C1,并写出A1、B1、C1的坐标.
(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
24.(10分)阅读下列解题过程:
已知,,为△ABC的三边长,且满足,试判断△ABC的形状.
解:∵ , ①
∴ . ②
∴ . ③
∴ △ABC是直角三角形. ④
回答下列问题:
(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为 .
(2)错误的原因为 .
(3)请你将正确的解答过程写下来.
25.(12分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠BAD= ;点D从B向C运动时,∠BDA逐渐变 (填“大”或“小”);
(2)当DC=2时,求证:△ABD≌△DCE;
(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.
26.学校为了丰富同学们的社团活动,开设了足球班.开学初在某商场购进A,B两种品牌的足球,购买A品牌足球花费了2400元,购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花20元.
(1)求所购买的A、B两种品牌足球的单价是多少元?
(2)为响应“足球进校园”的号召,决定再次购进A,B两种品牌足球共30个,恰逢商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了10%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A,B两种品牌足球的总费用不超过2000元,那么此次最多可购买多少个B品牌足球?
参考答案
一、选择题(每题4分,共48分)
1、A
【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.
【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,
∵AD是∠BAC的平分线,
∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,
∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,
∴由勾股定理得:AB=10,
又,
∴,
∴PC+PQ的最小值为,
故选:A.
【点睛】
本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.
2、A
【解析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.
考点:正方形的性质,勾股定理.
3、A
【分析】逐一对选项进行分析即可.
【详解】①两条直线被第三条直线所截,内错角不一定相等,故错误;
②三角形的一个外角大于任何与它不相邻的两个内角,故错误;
③如果和是对顶角,那么,故正确;
④若,则或,故错误.
所以只有一个真命题.
故选:A.
【点睛】
本题主要考查真假命题,会判断命题的真假是解题的关键.
4、B
【分析】根据折叠的性质得到,求得,根据等腰三角形的性质得到,于是得到结论.
【详解】解:∵,,
∴,
∴
.
由题意得:
,
∴
∴.
故选B.
【点睛】
该题主要考查了翻折变换的性质、等腰三角形的性质、三角形的内角和定理及其应用问题;解题的关键是牢固掌握翻折变换的性质、等腰三角形的性质、三角形的内角和定理等知识点.
5、D
【分析】因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.
【详解】△ABE与△ABC有一条公共边AB,
当点E在AB的下边时,点E有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);
当点E在AB的上边时,坐标为(﹣1,3);
点E的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).
故选:D.
【点睛】
本题主要考查了全等三角形的判定,熟练掌握相关判定定理是解题关键.
6、D
【分析】把x与y的值代入方程计算求出a的值,代入原式计算即可求出值.
【详解】把代入方程得:4﹣a=5,
解得:a=﹣1,
则=1,
故选:D.
【点睛】
此题考查了二元一次方程的解,方程的即为能使方程左右两边相等的未知数的值.
7、C
【分析】n边形的内角和为(n−2)180 ,由此列方程求n的值.
【详解】设这个多边形的边数是n,
则:(n−2)×180 =720 ,
解得n=6,
故选:C.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
8、A
【分析】分式有意义,即分母不等于0,从而可得解.
【详解】解:分式有意义,则,即,
故选:A
【点睛】
本题考查了分式,明确分式有意义的条件是分母不等于0是解题关键.
9、A
【分析】根据完全平方公式:,即可得出结论.
【详解】解:∵是完全平方式,
∴
解得:
故选A.
【点睛】
此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.
10、A
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【详解】解:A、是轴对称图形,故本选项符合题意;
B、不是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项不符合题意;
D、不是轴对称图形,故本选项不符合题意.
故选A.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
11、C
【详解】由点且到x轴的距离为2、到y轴的距离为1,得
|y|=2,|x|=1.
由P是第二象限的点,得
x=-1,y=2.
即点P的坐标是(-1,2),
故选C.
12、C
【详解】分两种情况:
在图①中,由勾股定理,得
;
;
∴BC=BD+CD=8+2=10.
在图②中,由勾股定理,得
;
;
∴BC=BD―CD=8―2=6.
故选C.
二、填空题(每题4分,共24分)
13、3.1.
【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.
【详解】解:3.145≈3.1(精确到百分位).
故答案为3.1.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.
14、6
【解析】根据三角形的中位线性质可得,
15、2
【分析】先套用平方差公式,再根据二次根式的性质计算可得.
【详解】原式=()2﹣()2=5﹣3=2,
考点:二次根式的混合运算
16、4.6×10
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】数据0.0000046用科学记数法表示为4.6×10
故答案为4.6×10
【点睛】
此题考查科学记数法,解题关键在于使用负指数幂进行表达
17、1
【分析】因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
【详解】∵,且是整数,
∴是整数,即1n是完全平方数;
∴n的最小正整数值为1.
故答案为1.
【点睛】
主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
18、;
【分析】由图得:
【详解】由图得:
∵直线和过轴上的奇数,,,,,,所对应的点A、B、C、D、E、F
∴当y=1时,x=-1,故A(-1,1)
当y=3时,x=-3,故B(-3,3)
当y=5时,x=-5,故C(-5,5)
当y=7时,x=-7,故D(-7,7)
当y=9时,x=-9,故E(-9,9)
当y=11时,x=-11,故F(-11,11)
可得:
故答案为:4;4(2n-1)
【点睛】
本题主要考查了一次函数综合题目,根掘找出规律,是解答本题的关键.
三、解答题(共78分)
19、9xy,-54
【分析】先去括号,再合并同类项化简原式,代入x,y的值求解即可.
【详解】原式
当x=2,y=-3时,
原式=9xy=9×2×(-3)=-54
【点睛】
本题考查了整式的化简运算,先通过合并同类项化简再代入求值是解题的关键.
20、(1)见解析;(2)结论成立,理由见解析;(3)见解析
【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN=BC;
(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;
(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.
【详解】(1)证明:∵△ABC是等边三角形,
∴AB=BC,∠ABC=∠ACB=60°,
∵PM∥AC,PN∥AB,
∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,
∴△BMP,△CNP是等边三角形,
∴∠BPM=∠CPN=60°,PN=PC,PN=PC,
∴∠BPN=∠MPC,
∴△BPN≌△MPC,
∴PM=PB,PN=PC,
∵BP+PC=BC,
∴PM+PN=BC;
(2)BN=CM总成立,理由:
由(1)知△BPN≌△MPC,
∴BN=CM;
(3)解:如图③即为所求.
作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC于H,
同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,
∴D与N,M与E,B与C关于AH对称.
∴BM=CE,
∴BM=CF,
∴P与F关于AH对称,
∴所做图形是轴对称图形.
【点睛】
本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21、(1)甲店每件租金50元,乙店每件租金60元;(2),;(3)租用30件时,甲乙两店的租金相同
【分析】(1)设甲店每件租金x元,乙店每件租金y元,根据“在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元”列出方程组进行求解即可;
(2)根据甲、乙两店的优惠政策进行求解即可得;
(3)根据两店租金相同,列出方程求解即可.
【详解】解:(1)设甲店每件租金x元,乙店每件租金y元,
由题意可得,解得,
答:甲店每件租金50元,乙店每件租金60元.
(2)甲店:,
乙店:当不超过5件时,则有
当超过5件时,则有,
综上:.
(3)由,解得,
答:租用30件时,甲乙两店的租金相同.
【点睛】
本题考查了二元一次方程组的实际应用,一次函数的实际应用问题,解题的关键是根据题意列出方程或函数关系式.
22、(1)①5;②3xy+y2;(2)①ab(a+1)(a-1);②-y(3x-y)2;(2)①x=9;②x=-
【分析】(1) ①先计算负整数指数、乘方和零指数幂,然后按实数的计算法则加减即可;
②先根据多项式乘以多项式法则和平方差公式进行计算,再合并同类项即可.
(2) ①首先找出公因式,进而利用平方差公式分解因式即可,
②找出公因式,进而利用完全平方公式分解因式即可;
(3) ①方程两边同时乘以x(x−3),然后求解即可,注意,最后需要检验;
②方程两边同时乘以(2x−5)(2x+5),然后求解即可,注意,最后需要检验;
【详解】解:(1) ①原式=4-8×0.125+1+1=4-1+1+1=5
②原式=4x2+3xy-4x2+y2=3xy+y2
(2) ①=ab(a2-1)= ab(a+1)(a-1)
②=-y(-6xy+9x2+y2)= -y(3x-y)2
(3) ①方程两边同乘x(x−3)得:2x=3x-9,
解得:x=9,
检验:当x=9时,x(x−3)≠0,
∴x=9是原方程的解;
②方程两边同乘(2x−5)(2x+5)得:2x(2x+5)-2(2x-5)= (2x−5)(2x+5)
解得:x=-,
检验:当x=-时,(2x−5)(2x+5) ≠0,
∴x=-是原方程的解.
【点睛】
本题考查实数的计算、因式分解和分式的加减,多项式乘以多项式法则,解分式方程,掌握运算顺序与运算法则和因式分解的方法是解题的关键.
23、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.
【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;
(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.
【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);
(2)如图,△A2B2C2为所作;
(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.
【点睛】
本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.
24、(1)③;(2)忽略了 的可能;(3)见解析
【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】(1)根据题意可知,
∵由,
∴通过移项得,故③错误;
(2)由(1)可知,错误的原因是:忽略了的可能;
(3)正确的写法为:∵,
∴,
∴,
∴,
∴或,
∴或,
∴是等腰三角形或直角三角形或等腰直角三角形;
故答案为是等腰三角形或直角三角形或等腰直角三角形
【点睛】
本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
25、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.
【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况;
(2)假设△ABD≌△DCE,利用全等三角形的对应边相等得出AB=DC=2,即可求得答案;
(3)假设△ADE是等腰三角形,分为三种情况:①当AD=AE时,∠ADE=∠AED=40°,根据∠AED>∠C,得出此时不符合;②当DA=DE时,求出∠DAE=∠DEA=70°,求出∠BAC,根据三角形的内角和定理求出∠BAD,根据三角形的内角和定理求出∠BDA即可;③当EA=ED时,求出∠DAC,求出∠BAD,根据三角形的内角和定理求出∠ADB.
【详解】(1)∠BAD=180°-∠ABD-∠BDA=180°-40°-115°=25°;
从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;
故答案为:25°;小.
(2)∵∠EDC+∠ADE=∠DAB+∠B,∠B=∠EDA=40°
∴∠EDC=∠DAB
∵AB=AC
∴∠B=∠C
在△ABD和△DCE中,
∴△ABD≌△DCE(ASA)
(3)∵AB=AC,
∴∠B=∠C=40°,
①当AD=AE时,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此时不符合;
②当DA=DE时,即∠DAE=∠DEA=×(180°-40°)=70°,
∵∠BAC=180°-40°-40°=100°,
∴∠BAD=100°-70°=30°;
∴∠BDA=180°-30°-40°=110°;
③当EA=ED时,∠ADE=∠DAE=40°,
∴∠BAD=100°-40°=60°,
∴∠BDA=180°-60°-40°=80°;
∴当∠BDA=110°或80°时,△ADE是等腰三角形.
【点睛】
本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.
26、 (1)购买A种品牌足球的单价为60元/个,购买B种品牌足球的单价为80元/个;(2)此次最多可购买1个B品牌足球.
【分析】(1)设A,B两种足球单价分别为x,y.根据题中两个条件“购买B品牌足球花费了1600元,且购买A品牌足球数量是购买B品牌足球数量的2倍”列出和“购买一个B品牌足球比购买一个A品牌足球多花20元”列出.得到一个分式方程,最后要进行检验.
(2)设设购买y个B品牌足球,则购买(10﹣y)个A品牌足球.然后根据(1)中的单价分别计算出调整后的单价,A的单价为:60×(1+10%),B单价为80×0.9 .最后再由A,B两种品牌足球的总费用不超过2000元建立一元一次不等式.
【详解】解:(1)设购买A种品牌足球的单价为x元/个,购买B种品牌足球的单价为y元/个,
根据题意得:
解得:
答:设购买A种品牌足球的单价为60元/个,购买B种品牌足球的单价为80元/个.
(2)设购买y个B品牌足球,则购买(10﹣y)个A品牌足球,
根据题意得:60×(1+10%)(10﹣y)+80×0.9y≤2000,
解得:.
∵y为整数,
∴y的最大值为1.
答:此次最多可购买1个B品牌足球.
【点睛】
本题考察了分式方程的实际应用与一元一次不等式的实际应用.在分式方程应用中,找准题干给出的条件列出等量关系式是解题关键,最重要的是结果要进行检验;而一元一次不等式的不等符号要判断正确,常见的容易出错的不等符号与文字之间的关系有:不超过(),不低于(),至多(),至少().
那曲市2023-2024学年八年级数学第一学期期末监测模拟试题【含解析】: 这是一份那曲市2023-2024学年八年级数学第一学期期末监测模拟试题【含解析】,共17页。试卷主要包含了下列因式分解错误的是等内容,欢迎下载使用。
酒泉市重点中学2023-2024学年八年级数学第一学期期末监测试题【含解析】: 这是一份酒泉市重点中学2023-2024学年八年级数学第一学期期末监测试题【含解析】,共22页。
酒泉市重点中学2023-2024学年八年级数学第一学期期末监测试题【含解析】: 这是一份酒泉市重点中学2023-2024学年八年级数学第一学期期末监测试题【含解析】,共22页。试卷主要包含了二次根式中的x的取值范围是,将多项式分解因式,结果正确的是等内容,欢迎下载使用。