搜索
    上传资料 赚现金
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第七章 §7.5 空间直线、平面的垂直.pptx
    • 练习
      第七章 §7.5 空间直线、平面的垂直(教师版).docx
    • 练习
      第七章 §7.5 空间直线、平面的垂直(同步练习).docx
    • 讲义
      第七章 §7.5 空间直线、平面的垂直-2025新高考一轮复习讲义(学生版).docx
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)01
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)02
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)03
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)04
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)05
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)06
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)07
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)08
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)01
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)02
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)03
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)01
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)02
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)01
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)02
    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)03
    还剩52页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)

    展开
    这是一份第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习),文件包含第七章§75空间直线平面的垂直pptx、第七章§75空间直线平面的垂直教师版docx、第七章§75空间直线平面的垂直同步练习docx、第七章§75空间直线平面的垂直-2025新高考一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    §7.5 空间直线、平面的垂直
    1.理解空间中直线与直线、直线与平面、平面与平面的垂直关系.2.掌握直线与平面、平面与平面垂直的判定与性质,并会简单应用.
    第一部分 落实主干知识
    第二部分 探究核心题型
    1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面α内的 直线都垂直,就说直线l与平面α互相垂直.
    (2)判定定理与性质定理
    _____________________________
    2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的 所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是 ;一条直线和平面平行,或在平面内,我们说它们所成的角是 .(2)范围: .
    3.二面角(1)定义:从一条直线出发的 所组成的图形叫做二面角.(2)二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作 的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.
    (3)二面角的范围: .
    4.平面与平面垂直(1)平面与平面垂直的定义一般地,两个平面相交,如果它们所成的二面角是 ,就说这两个平面互相垂直.
    ______________________
    1.三垂线定理平面内的一条直线如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直.2.三垂线定理的逆定理平面内的一条直线如果和穿过该平面的一条斜线垂直,那么它也和这条斜线在该平面内的射影垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.
    1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若直线l与平面α内的两条直线都垂直,则l⊥α.(  )(2)若直线a⊥α,b⊥α,则a∥b.(  )(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(  )(4)若α⊥β,a⊥β,则a∥α.(  )
    2.(必修第二册P163习题8.6T3改编)(多选)下列命题中不正确的是A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线aB.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面βC.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线aD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
    若直线a垂直于平面α,则直线a垂直于平面α内的所有直线,故C正确,其他选项均不正确.
    3.(2023·石嘴山模拟)如图,PA是圆柱的母线,AB是圆柱的底面直径,C是圆柱底面圆周上的任意一点(不与A,B重合),则下列说法错误的是A.PA⊥平面ABCB.BC⊥平面PACC.AC⊥平面PBCD.三棱锥P-ABC的四个面都是直角三角形
    因为PA是圆柱的母线,AB是圆柱的底面直径,C是圆柱底面圆周上的任意一点(不与A,B重合),则PA⊥平面ABC,故A正确;而BC⊂平面ABC,则PA⊥BC,又AC⊥BC,PA∩AC=A,PA,AC⊂平面PAC,则有BC⊥平面PAC,故B正确;
    由A知,△PAB,△PAC都是直角三角形,由B知,△ABC,△PBC都是直角三角形,故D正确;假定AC⊥平面PBC,PC⊂平面PBC,则AC⊥PC,即∠PCA=90°,而在△PAC中∠PAC=90°,矛盾,所以AC⊥平面PBC不正确,故C错误.
    4.过平面外一点P的斜线段是过这点的垂线段的 倍,则斜线与平面α所成的角是_____.
    如图,连接AB,由PB⊥α,知∠PAB是线段PA与平面α所成的角,
    例1 (2024·娄底模拟)如图,在三棱柱ABC-A1B1C1中,点B1在底面ABC内的射影恰好是点C.(1)若点D是AC的中点,且DA=DB,证明:AB⊥CC1;
    题型一 直线与平面垂直的判定与性质
    ∵点B1在底面ABC内的射影是点C,∴B1C⊥平面ABC,∵AB⊂平面ABC,∴B1C⊥AB.在△ABC中,DA=DB=DC,∴BC⊥AB,∵BC∩B1C=C,BC,B1C⊂平面BCC1B1,∴AB⊥平面BCC1B1,∵CC1⊂平面BCC1B1,∴AB⊥CC1.
    如图,延长BC至点E,使BC=CE,连接C1E,则B1C1綉CE,四边形B1CEC1为平行四边形,则C1E綉B1C.由(1)知B1C⊥平面ABC,∴C1E⊥平面ABC,∵CE,BE⊂平面ABC,∴C1E⊥CE,C1E⊥BE,
    证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.
    跟踪训练1 如图,已知正方体ABCD-A1B1C1D1.(1)求证:A1C⊥B1D1;
    如图,连接A1C1.因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又因为CC1∩A1C1=C1,A1C1,CC1⊂平面A1C1C,所以B1D1⊥平面A1C1C.又因为A1C⊂平面A1C1C,所以A1C⊥B1D1.
    (2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.
    如图,连接B1A,AD1.因为B1C1=AD,B1C1∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1,因为MN⊥C1D,所以MN⊥AB1.又因为MN⊥B1D1,AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,所以MN⊥平面AB1D1.
    由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又因为AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,所以A1C⊥平面AB1D1.所以MN∥A1C.
    例2 (2023·全国甲卷)如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°.
    题型二 平面与平面垂直的判定与性质
    (1)证明:平面ACC1A1⊥平面BB1C1C;
    因为A1C⊥平面ABC,BC⊂平面ABC,所以A1C⊥BC,又因为∠ACB=90°,即AC⊥BC,因为A1C,AC⊂平面ACC1A1,A1C∩AC=C,所以BC⊥平面ACC1A1,又因为BC⊂平面BB1C1C,所以平面ACC1A1⊥平面BB1C1C.
    (2)设AB=A1B,AA1=2,求四棱锥A1-BB1C1C的高.
    如图,过点A1作A1O⊥CC1于点O.因为平面ACC1A1⊥平面BB1C1C,平面ACC1A1∩平面BB1C1C=CC1,A1O⊂平面ACC1A1,所以A1O⊥平面BB1C1C,所以四棱锥A1-BB1C1C的高为A1O.因为A1C⊥平面ABC,AC,BC⊂平面ABC,
    所以A1C⊥BC,A1C⊥AC,在Rt△ABC与Rt△A1BC中,因为A1B=AB,BC=BC,所以Rt△ABC≌Rt△A1BC,所以A1C=AC.设A1C=AC=x,则A1C1=x,
    所以四棱锥A1-BB1C1C的高为1.
    (1)判定面面垂直的方法①面面垂直的定义.②面面垂直的判定定理.(2)面面垂直性质的应用①面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.
    跟踪训练2 (2023·邯郸模拟)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥平面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥平面ABCD;
    ∵平面PAD⊥平面ABCD,且PA⊂平面PAD,PA⊥AD,平面PAD∩平面ABCD=AD,∴PA⊥平面ABCD.
    (2)平面BEF∥平面PAD;
    ∵AB∥CD,CD=2AB,E是CD的中点,∴AB∥DE,且AB=DE,∴四边形ABED是平行四边形,∴AD∥BE,∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD,∵E和F分别是CD和PC的中点,∴EF∥PD,∵EF⊄平面PAD,PD⊂平面PAD,
    ∴EF∥平面PAD,∵BE∩EF=E,BE,EF⊂平面BEF,∴平面BEF∥平面PAD.
    (3)平面BEF⊥平面PCD.
    ∵AB⊥AD,∴平行四边形ABED是矩形,∴BE⊥CD,AD⊥CD,由(1)知PA⊥平面ABCD,∴PA⊥CD,∵PA∩AD=A,∴CD⊥平面PAD,∴CD⊥PD,∵E和F分别是CD和PC的中点,∴PD∥EF,∴CD⊥EF,又∵BE∩EF=E,∴CD⊥平面BEF,∵CD⊂平面PCD,∴平面BEF⊥平面PCD.
    例3 如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.(1)试判断不论点P在AD1上的任何位置,是否都有平面BPA⊥平面AA1D1D,并证明你的结论;
    题型三 垂直关系的综合应用
    是.∵BA⊥平面AA1D1D,BA⊂平面BPA,∴平面BPA⊥平面AA1D1D,∴无论点P在AD1上的任何位置,都有平面BPA⊥平面AA1D1D.
    (2)当P为AD1的中点时,求异面直线AA1与B1P所成角的余弦值;
    过点P作PE⊥A1D1,垂足为E,连接B1E,如图,则PE∥AA1,∴∠B1PE是异面直线AA1与B1P所成的角.在Rt△AA1D1中,∵∠AD1A1=60°,∴∠A1AD1=30°,
    (3)求PB1与平面AA1D1D所成角的正切值的最大值.
    由(1)知,B1A1⊥平面AA1D1D,∴∠B1PA1是PB1与平面AA1D1D所成的角,
    ∴当A1P最小时,tan∠B1PA1最大,这时A1P⊥AD1,
    已知AO是平面α的斜线,如图,A是斜足,OB⊥α,B是垂足,则直线AB是斜线AO在平面α内的射影,设AC是α内的任一过点A的直线,且BC⊥AC,C为垂足,又设AO与直线AB所成的角为θ1,AB与AC所成的角是θ2,AO与AC所成的角为θ,则cs θ=cs θ1·cs θ2.
    cs θ=cs θ1·cs θ2的应用
    典例 如图,PA是平面α的斜线,∠BAC在平面α内,且∠BAC=90°,又∠PAB=∠PAC=60°,则PA与平面α所成的角为________.
    作P在α内的正射影O,则O在∠BAC的平分线上,∠PAO为PA与平面α所成的角,所以cs∠PAC=cs∠PAO·cs∠OAC,所以cs 60°=cs∠PAO·cs 45°,
    故∠PAO=45°,所以PA与平面α所成的角为45°.
    (1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证.
    跟踪训练3 (多选)如图,两个共底面的正四棱锥组成一个八面体E-ABCD-F,且该八面体的各棱长均相等,则A.异面直线AE与BC所成的角为60°B.BD⊥CEC.平面ABF∥平面CDED.直线AE与平面BDE所成的角为60°
    因为BC∥AD,所以∠EAD(或其补角)即为异面直线AE与BC所成的角,又AD=DE=AE,所以∠EAD=60°,即异面直线AE与BC所成的角为60°,A正确;连接AC交BD于点O,则点O为正方形ABCD的中心,连接EF,根据正四棱锥的性质可知EF必过点O,且OE⊥平面ABCD,所以OE⊥BD,
    又BD⊥AC,OE∩AC=O,OE,AC⊂平面ACE,所以BD⊥平面ACE,又CE⊂平面ACE,所以BD⊥CE,B正确;由对称性可知OE=OF,OA=OC,所以四边形AFCE为平行四边形,所以AF∥CE,又AF⊄平面CDE,CE⊂平面CDE,所以AF∥平面CDE,同理BF∥平面CDE,
    又AF∩BF=F,AF,BF⊂平面ABF,所以平面ABF∥平面CDE,C正确;由AE=AF,OE=OF,得AO⊥EF,在正方形ABCD中,AO⊥BD,又BD∩EF=O,所以AO⊥平面BEDF,所以∠AEO即为直线AE与平面BDE所成的角,
    设该八面体的棱长为2,
    所以∠AEO=45°,D错误.
    一、单项选择题1.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β
    由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,则直线平行于平面β,因此A是真命题;过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B是假命题;根据面面垂直的性质定理知,选项C,D是真命题.
    2.若P是△ABC所在平面外一点,且PA⊥BC,PB⊥AC,则点P在△ABC所在平面内的射影O是△ABC的A.内心 B.外心C.重心 D.垂心
    如图所示,因为PA⊥BC,PO⊥BC,且PA∩PO=P,所以BC⊥平面PAO,则BC⊥OA,同理得OB⊥AC,所以O是△ABC的垂心.
    3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC内的射影H必在A.直线AB上B.直线BC上C.直线AC上D.△ABC内部
    连接AC1(图略),由AC⊥AB,AC⊥BC1,AB∩BC1=B,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC内的射影H必在平面ABC1与平面ABC的交线AB上.
    4.(2023·景德镇模拟)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题错误的是A.若m⊥α,n⊥β,且α∥β,则m∥nB.若m⊥α,n∥β,且α∥β,则m⊥nC.若α∥β,m⊂α,n⊂β,则m∥nD.若m⊥α,n⊥β,且α⊥β,则m⊥n
    由n⊥β且α∥β,可得n⊥α,而垂直于同一个平面的两条直线相互平行,故A正确;由于α∥β,m⊥α,所以m⊥β,又因为n∥β,则m⊥n,故B正确;若α∥β,m⊂α,n⊂β,则m与n平行或异面,故C错误;如图,设α∩β=l,在平面β内作直线c⊥l,又因为α⊥β,则c⊥α,
    又m⊥α,所以m∥c,因为n⊥β,c⊂β,所以n⊥c,从而有m⊥n,故D正确.
    5.刘徽注《九章算术·商功》“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”如图1解释了由一个长方体得到“堑堵”“阳马”“鳖臑”的过程.
    堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于底面且底面为矩形的四棱锥;鳖臑是四个面都为直角三角形的四面体.
    在如图2所示由正方体ABCD-A1B1C1D1得到的堑堵ABC-A1B1C1中,当点P在下列三个位置:A1A中点,A1B中点,A1C中点时,分别形成的四面体P-ABC中,鳖臑的个数为A.0   B.1   C.2   D.3
    因为PA⊥平面ABC,则∠PAC=∠PAB=90°,∠ABC=90°.由BC⊥平面PAB,得BC⊥PB,即∠PBC=90°,则△PAB,△PAC,△ABC,△PBC都是直角三角形,即此时四面体P-ABC是鳖臑;
    当点P为A1B的中点时,因为BC⊥平面ABB1A1,所以BC⊥PB,BC⊥AB,所以△PBC,△ABC为直角三角形.因为四边形ABB1A1是正方形,所以AP⊥BP,则△PAB是直角三角形,又AP⊥BC,BP∩BC=B,所以AP⊥平面PBC,
    又PC⊂平面PBC,所以AP⊥PC,所以△PAC是直角三角形,则此时四面体P-ABC是鳖臑;当点P为A1C的中点时,
    由勾股定理可知,△PAC不是直角三角形,则此时四面体P-ABC不是鳖臑.
    6.在正三棱锥A-BCD中,二面角A-BC-D的平面角为60°,则AC与平面BCD所成角的正切值为
    取BC的中点为E,△BCD的中心为G,连接AE,DE,CG,AG,因为AB=AC,BD=CD,则AE⊥BC,DE⊥BC,可得二面角A-BC-D的平面角为∠AED,即∠AED=60°,
    因为三棱锥A-BCD为正三棱锥,则AG⊥平面BCD,且DE,CG⊂平面BCD,则AG⊥DE,AG⊥CG,
    由AG⊥平面BCD,可知AC与平面BCD所成的角为∠ACG,
    二、多项选择题7.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点E,F分别是棱PA,PB的中点,则下列结论正确的是A.CD⊥PDB.AB⊥PCC.平面PBD⊥平面PACD.E,F,C,D四点共面
    如图所示,因为PA⊥平面ABCD,所以PA⊥CD,又因为底面ABCD是矩形,所以CD⊥AD,又PA∩AD=A,所以CD⊥平面PAD,所以CD⊥PD,故A正确;因为CD∥AB,CD⊥平面PAD,所以AB⊥平面PAD,
    又PC∩平面PAD=P,所以AB与PC不垂直,故B错误;因为底面ABCD是矩形,所以BD与AC不一定垂直,则BD与平面PAC不一定垂直,所以平面PBD与平面PAC不一定垂直,故C错误;因为点E,F分别是棱PA,PB的中点,所以EF∥AB,又AB∥CD,所以EF∥CD,所以E,F,C,D四点共面,故D正确.
    8.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,BC=CD= =2,E为AB的中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC= .则下列说法正确的有A.CD⊥平面EDP
    对于A,∵E为AB的中点,∴BE=CD,BE∥CD,∴四边形EBCD为平行四边形,又AB⊥BC,∴四边形EBCD为矩形,∴CD⊥DE.
    ∴PD2+CD2=PC2,∴CD⊥PD,又PD∩DE=D,PD,DE⊂平面EDP,∴CD⊥平面EDP,A正确;
    对于B,∵BC∥DE,AB⊥BC,∴AE⊥DE,即PE⊥DE,∵CD⊥平面EDP,PE⊂平面EDP,∴CD⊥PE,又CD∩DE=D,CD,DE⊂平面EBCD,∴PE⊥平面EBCD,
    对于C,∵CD⊥平面EDP,PD⊂平面EDP,∴PD⊥CD;又DE⊥CD,∴二面角P-CD-B的平面角为∠PDE,
    对于D,∵CD⊥平面EDP,∴∠CPD即为直线PC与平面EDP所成的角,
    三、填空题9.在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面有_____个.
    在正方体中,侧棱都和底面垂直,故在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面有平面ABCD和平面A1B1C1D1,共两个.
    10.埃及胡夫金字塔是古代世界建筑奇迹之一,其形状可视为一个正四棱锥,已知该金字塔的塔高与底面边长的比满足黄金比例,即比值约为 ,则它的侧棱与底面所成角的正切值约为___________.
    11.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_______________________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
    DM⊥PC(或MB⊥PC)
    连接AC,因为底面ABCD各边都相等,所以AC⊥BD,因为PA⊥底面ABCD,BD⊂底面ABCD,所以PA⊥BD,又AC∩PA=A,AC,PA⊂平面PAC,所以BD⊥平面PAC,因为PC⊂平面PAC,
    所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,PC与平面MBD内两条相交直线垂直,即有PC⊥平面MBD,而PC⊂平面PCD,所以平面MBD⊥平面PCD.
    12.在长方体ABCD-A1B1C1D1中,已知AB=2,BC=t,若在线段AB上存在点E,使得EC1⊥ED,则实数t的取值范围是 ________.
    因为C1C⊥平面ABCD,ED⊂平面ABCD,可得C1C⊥ED,由EC1⊥ED,EC1∩C1C=C1,EC1,C1C⊂平面ECC1,可得ED⊥平面ECC1,所以ED⊥EC,在矩形ABCD中,设AE=a,0≤a≤2,则BE=2-a,由∠DEA+∠CEB=90°,
    即t2=a(2-a)=-(a-1)2+1,当a=1时,t2取得最大值1,即t的最大值为1;当a=0或2时,t2取得最小值0,但由于t>0,所以t的取值范围是(0,1].
    四、解答题13.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后点A的位置为点P,且使平面PBD⊥平面BCD.
    求证:(1)CD⊥平面PBD;
    因为AD=AB,∠BAD=90°,所以∠ABD=∠ADB=45°.又因为AD∥BC,所以∠DBC=45°.又∠BCD=45°,所以∠BDC=90°,即BD⊥CD.因为平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面PBD.
    (2)平面PBC⊥平面PCD.
    由CD⊥平面PBD,得CD⊥BP.又BP⊥PD,PD∩CD=D,所以BP⊥平面PCD.又BP⊂平面PBC,所以平面PBC⊥平面PCD.
    (1)若M为PA的中点,求证:AC∥平面MDE;
    连接PC,交DE于点N,连接MN,∵四边形PDCE为矩形,∴N为PC的中点,在△PAC中,M,N分别为PA,PC的中点,∴MN∥AC,∵MN⊂平面MDE,AC⊄平面MDE,∴AC∥平面MDE.
    (2)求直线PB与直线CD所成角的大小;
    ∵∠BAD=∠ADC=90°,∴AB∥CD,∴∠PBA是直线PB与直线CD所成的角.∵四边形PDCE为矩形,∴PD⊥CD,∵平面PDCE⊥平面ABCD,又PD⊂平面PDCE,平面PDCE∩平面ABCD=CD,∴PD⊥平面ABCD,∵AD,AB⊂平面ABCD,∴PD⊥AD,PD⊥AB,
    ∵∠BAD=90°,∴AB⊥AD,
    又∵PD⊥AB,PD∩AD=D,PD,AD⊂平面PAD,∴AB⊥平面PAD,∵PA⊂平面PAD,∴AB⊥PA,在Rt△PAB中,∵AB=1,
    (3)设平面PAD∩平面EBC=l,试判断l与平面ABCD能否垂直?并证明你的结论.
    l与平面ABCD垂直.证明如下:∵四边形PDCE为矩形,∴EC∥PD,∵PD⊂平面PAD,EC⊄平面PAD,∴EC∥平面PAD,EC⊂平面EBC,∵平面PAD∩平面EBC=l,∴EC∥l,则l∥PD,由(2)可知PD⊥平面ABCD,∴l⊥平面ABCD.
    15.(多选)如图,在正方体ABCD-A1B1C1D1中,点P在线段B1C上运动,则下列说法正确的是A.直线BD1⊥平面A1C1DB.三棱锥P-A1C1D的体积为定值
    A项,如图,连接B1D1,由正方体可得A1C1⊥B1D1,且BB1⊥平面A1B1C1D1,又A1C1⊂平面A1B1C1D1,则BB1⊥A1C1,因为B1D1∩BB1=B1,B1D1,BB1⊂平面BD1B1,所以A1C1⊥平面BD1B1,又BD1⊂平面BD1B1,所以A1C1⊥BD1.
    同理,连接AD1,易证得A1D⊥BD1,因为A1D∩A1C1=A1,A1D,A1C1⊂平面A1C1D,所以BD1⊥平面A1C1D,故A正确;
    B项, = ,
    因为点P在线段B1C上运动,
    且C1到平面A1PD的距离即为C1到平面A1B1CD的距离,也为定值,
    故三棱锥P-A1C1D的体积为定值,故B正确;
    D项,因为直线BD1⊥平面A1C1D,所以若直线C1P与平面A1C1D所成角的正弦值最大,则直线C1P与直线BD1所成角的余弦值最大,即点P运动到B1C中点处,直线C1P与直线BD1所成角为∠C1BD1,
    设正方体棱长为1,在Rt△D1C1B中,
    16.已知四边形ABCD是正方形,将△DAC沿AC翻折到△D1AC的位置,点G为△D1AC的重心,点E在线段BC上,GE∥平面D1AB,GE⊥D1A.若CE=λEB,则λ=____,直线GB与平面D1AC所成角的正切值为____.
    延长CG交AD1于点F,连接BF,则F为AD1的中点,如图所示,因为GE∥平面D1AB,GE⊂平面CBF,平面CBF∩平面D1AB=BF,
    所以GE∥BF,因为点G为△D1AC的重心,所以CG=2GF,所以CE=2EB,λ=2.取CA的中点O,连接OB,GB,GO,OD1,则OB⊥AC,设正方形ABCD的边长为2,因为GE∥BF,GE⊥D1A,所以BF⊥D1A,又F为AD1的中点,所以AB=D1B=2,
    相关课件

    第七章 §7.4 空间直线、平面的平行-2025年新高考数学一轮复习(课件+讲义+练习): 这是一份第七章 §7.4 空间直线、平面的平行-2025年新高考数学一轮复习(课件+讲义+练习),文件包含第七章§74空间直线平面的平行pptx、第七章§74空间直线平面的平行教师版docx、第七章§74空间直线平面的平行同步练习docx、第七章§74空间直线平面的平行-2025新高考一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    新高考数学一轮复习课件 第7章 §7.5 空间直线、平面的垂直(含详解): 这是一份新高考数学一轮复习课件 第7章 §7.5 空间直线、平面的垂直(含详解),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,任意一条,m⊂α,n⊂α,m∩n=P,两条相交直,l⊥m,l⊥n等内容,欢迎下载使用。

    第七章 §7.5 空间直线、平面的垂直(教师版+学生课时教案+课时作业+配套PPT): 这是一份第七章 §7.5 空间直线、平面的垂直(教师版+学生课时教案+课时作业+配套PPT),文件包含第七章§75空间直线平面的垂直课时配套pptpptx、第七章§75空间直线平面的垂直学生课时教案docx、第七章§75空间直线平面的垂直课时课后练习docx、第七章§75空间直线平面的垂直教师用书docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第七章 §7.5 空间直线、平面的垂直-2025年新高考数学一轮复习(课件+讲义+练习)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map