![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)01](http://img-preview.51jiaoxi.com/3/3/16066012/0-1723614167032/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)02](http://img-preview.51jiaoxi.com/3/3/16066012/0-1723614167144/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)03](http://img-preview.51jiaoxi.com/3/3/16066012/0-1723614167171/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)01](http://img-preview.51jiaoxi.com/3/3/16066012/1-1723614178979/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)02](http://img-preview.51jiaoxi.com/3/3/16066012/1-1723614179047/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)03](http://img-preview.51jiaoxi.com/3/3/16066012/1-1723614179088/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
新高考数学一轮复习计算题精练专题07 数列求和(2份打包,原卷版+解析版)
展开(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0 SKIPIF 1 < 0
【详解】(1)已知等比数列 SKIPIF 1 < 0 的公比为2,且 SKIPIF 1 < 0 成等差数列,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
SKIPIF 1 < 0
2.正项数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 为等差数列,并求出 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前2023项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【详解】(1)由 SKIPIF 1 < 0 可得, SKIPIF 1 < 0 ,
又因为 SKIPIF 1 < 0 为正项数列 SKIPIF 1 < 0 的前n项和,所以 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 为等差数列,
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
3.已知数列 SKIPIF 1 < 0 为:1,1,2,1,1,2,3,1,1,2,1,1,2,3,4….即先取 SKIPIF 1 < 0 ,接着复制该项粘贴在后面作为 SKIPIF 1 < 0 ,并添加后继数2作为 SKIPIF 1 < 0 ;再复制所有项1,1,2并粘贴在后面作为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,并添加后继数3作为 SKIPIF 1 < 0 ,…依次继续下去.记 SKIPIF 1 < 0 表示数列 SKIPIF 1 < 0 中 SKIPIF 1 < 0 首次出现时对应的项数.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)由题意知: SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公比的等比数列,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
(2)由(1)可知, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 在前 SKIPIF 1 < 0 项中出现1次,
5在前 SKIPIF 1 < 0 项中出现2次,4在前 SKIPIF 1 < 0 项中出现 SKIPIF 1 < 0 次,3在前 SKIPIF 1 < 0 项中出现 SKIPIF 1 < 0 次,2在前 SKIPIF 1 < 0 项中出现 SKIPIF 1 < 0 次,1在前 SKIPIF 1 < 0 项中出现 SKIPIF 1 < 0 次,
所以 SKIPIF 1 < 0 .
4.已知等差数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和.
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)设公差为 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)由(1)可得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
故数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
5.已知 SKIPIF 1 < 0 是首项为2,公差为3的等差数列,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
(1)证明 SKIPIF 1 < 0 是等比数列,并求 SKIPIF 1 < 0 的通项公式;
(2)若数列 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中有公共项,即存在 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 成立.按照从小到大的顺序将这些公共项排列,得到一个新的数列,记作 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1)证明见解析, SKIPIF 1 < 0 , SKIPIF 1 < 0
(2) SKIPIF 1 < 0 SKIPIF 1 < 0
【详解】(1)由题意可得: SKIPIF 1 < 0 ,
而 SKIPIF 1 < 0 ,变形可得: SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 是首项为3,公比为3的等比数列.
从而 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
(2)由题意可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,此时满足条件,
即 SKIPIF 1 < 0 时为公共项,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 .
6.设数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0
(2) SKIPIF 1 < 0 , SKIPIF 1 < 0
【详解】(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 是首项为1,公比为2的等比数列,则 SKIPIF 1 < 0 .
(2)由题设知: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 为偶数时, SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 为奇数时, SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ;
综上, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
7.已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 ,且对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0
(1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 的值,并证明数列 SKIPIF 1 < 0 是等比数列;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,证明见解析(2) SKIPIF 1 < 0
【详解】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 .
由题意得 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是等比数列.
(2)由(1)知 SKIPIF 1 < 0 .
运用分组求和,可得 SKIPIF 1 < 0
SKIPIF 1 < 0 .
8.已知正项数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 且对任意 SKIPIF 1 < 0 , SKIPIF 1 < 0 成等差数列,又正项等比数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)若数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,是否存在正整数 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 .若存在,求出 SKIPIF 1 < 0 的最大值;若不存在,请说明理由.
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 (2)不存在,理由见解析
【详解】(1)设 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,显然 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去),又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
又对任意 SKIPIF 1 < 0 , SKIPIF 1 < 0 成等差数列, SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,公差 SKIPIF 1 < 0 的等差数列,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 时, SKIPIF 1 < 0 满足上式,
故 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ①,
SKIPIF 1 < 0 SKIPIF 1 < 0 ②,
①-②,得 SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
故不存在正整数 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 .
9.已知各项均为正数的等比数列 SKIPIF 1 < 0 ,其前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 ,
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 为数列 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 中最大的项,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【详解】(1)设 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
两式相减可得, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去),
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以等比数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ;
(2)由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,当且仅当 SKIPIF 1 < 0 时等号成立,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 .
即 SKIPIF 1 < 0 .
10.已知等差数列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 求数列 SKIPIF 1 < 0 的前2n项的和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比数列,所以 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 的前2n项的和 SKIPIF 1 < 0 .
11.设 SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前n项和,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2)令 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 即 SKIPIF 1 < 0
SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
(2)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
两式相加可得 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
由于 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
12.已知 SKIPIF 1 < 0 是递增的等差数列, SKIPIF 1 < 0 是等比数列,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的通项公式;
(2) SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)解:由题意,设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因为数列 SKIPIF 1 < 0 为等比数列,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
又因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以,等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,
因此, SKIPIF 1 < 0 .
(2)解:由 SKIPIF 1 < 0 ,①
可得 SKIPIF 1 < 0 ,所以, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,②
① SKIPIF 1 < 0 ②得 SKIPIF 1 < 0 ,所以, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 不满足 SKIPIF 1 < 0 ,所以, SKIPIF 1 < 0 .
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 也满足 SKIPIF 1 < 0 ,
综上所述,对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
13.已知数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 .
可得 SKIPIF 1 < 0 ,
整理得: SKIPIF 1 < 0 ,
从而 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是首项为1,公比为2的等比数列;
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,经检验, SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,
综上,数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ;
(2)由(1)得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
14.已知 SKIPIF 1 < 0 为数列 SKIPIF 1 < 0 的前n项和, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
化简得 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以1为首项,2为公差的等差数列,
所以 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
所以 SKIPIF 1 < 0 .
15.已知函数 SKIPIF 1 < 0 的首项 SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求证 SKIPIF 1 < 0 为等比数列,并求 SKIPIF 1 < 0 .
(2)对于实数 SKIPIF 1 < 0 , SKIPIF 1 < 0 表示不超过 SKIPIF 1 < 0 的最大整数,求 SKIPIF 1 < 0 的值.
【答案】(1)证明见解析, SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
又因为 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
(2)因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 .
设 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
16.已知各项均为正数的数列{ SKIPIF 1 < 0 }满足 SKIPIF 1 < 0 (正整数 SKIPIF 1 < 0
(1)求证:数列 SKIPIF 1 < 0 是等比数列;
(2)求数列{ SKIPIF 1 < 0 }的前n项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析(2) SKIPIF 1 < 0
【详解】(1)证明:已知递推公式 SKIPIF 1 < 0 ,两边同时加上3,
得: SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项、以2为公比的等比数列.
(2)由(1) SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 .
17.已知在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 是公差为1的等差数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,求使得 SKIPIF 1 < 0 的最大整数m的值;
(3)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0
【答案】(1) SKIPIF 1 < 0 (2)8(3) SKIPIF 1 < 0
【详解】(1)由 SKIPIF 1 < 0 可知 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 是公差为1的等差数列,
所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,故满足条件的最大整数m的值为8.
(3)由题得 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
18.已知数列 SKIPIF 1 < 0 各项都不为 SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)令 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【详解】(1)由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,两式相减得 SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,因为数列 SKIPIF 1 < 0 各项都不为 SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为公比的等比数列.令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
由题知 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
(2)由(1)得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
19.已知等比数列 SKIPIF 1 < 0 的公比为2,数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)记 SKIPIF 1 < 0 为数列 SKIPIF 1 < 0 的前n项和,证明: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 (2)证明见解析
【详解】(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 是以2为首项,2为公比的等比数列,故 SKIPIF 1 < 0 .
则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 是以2为首项,1为公差的等差数列,故 SKIPIF 1 < 0 .
(2)由(1)可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
则 SKIPIF 1 < 0 ①,
SKIPIF 1 < 0 ②,
①-②可得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是递增数列.
则 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
20.在数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 为等比数列,并求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析; SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【详解】(1) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
数列 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0
数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0
SKIPIF 1 < 0 .
21.记 SKIPIF 1 < 0 为数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,已知 SKIPIF 1 < 0 是公差为2的等差数列.
(1)求 SKIPIF 1 < 0 的通项公式;
(2)证明: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2)证明见解析
【详解】(1)因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 是公差为2的等差数列,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,①
所以 SKIPIF 1 < 0 ,②
① -②则 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
22.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 (n≥2, SKIPIF 1 < 0 ), SKIPIF 1 < 0 .
(1)求证:数列 SKIPIF 1 < 0 为等比数列,并求 SKIPIF 1 < 0 的通项公式;
(2)求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析, SKIPIF 1 < 0
(2) SKIPIF 1 < 0
【详解】(1)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 是首项为2,公比为2的等比数列,
∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
(2)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
当n为偶数时,
SKIPIF 1 < 0 .
当n为奇数时,
SKIPIF 1 < 0 SKIPIF 1 < 0 .
综上 SKIPIF 1 < 0 .
23.已知数列 SKIPIF 1 < 0 是公差为 SKIPIF 1 < 0 的等差数列,且满足 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前10项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 是公差为 SKIPIF 1 < 0 的等差数列, SKIPIF 1 < 0 ,
所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去),
所以 SKIPIF 1 < 0 ;
(2)由(1)得,
SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 .
24.已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 ,所以当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
两式相减,得 SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,又当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以4为首项,2为公比的等比数列,
所以 SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,易知, SKIPIF 1 < 0 ,
设数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ①, SKIPIF 1 < 0 ②,
由①-②,得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
25.已知等比数列 SKIPIF 1 < 0 的各项均为正数,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通项公式;
(2)数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【详解】(1)设数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 ;
(2)由题可知 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减得: SKIPIF 1 < 0
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
26.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2)证明见解析
【详解】(1)解:因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 满足条件,
所以 SKIPIF 1 < 0 ;
(2)因为 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
27.数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .
(1)求证: SKIPIF 1 < 0 是等比数列;
(2)若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
【答案】(1)证明见解析(2) SKIPIF 1 < 0
【详解】(1) SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
所以数列 SKIPIF 1 < 0 是以2为首项,2为公比的等比数列.
(2)由(1)可得, SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 设其前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ①
SKIPIF 1 < 0 ②
减②得
SKIPIF 1 < 0
所以 SKIPIF 1 < 0
所以 SKIPIF 1 < 0
28.已知正数数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ,
且 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0
(2) SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0
SKIPIF 1 < 0
又 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
29.已知数列 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)解:因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
以此类推可知,对任意的 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是首项为 SKIPIF 1 < 0 ,公比为 SKIPIF 1 < 0 的等比数列,
所以 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)解: SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 .
30.已知数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 是数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,数列 SKIPIF 1 < 0 是公差为1的等差数列.
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)证明: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2)证明见解析
【详解】(1)因为数列 SKIPIF 1 < 0 是首项为2,公差为 SKIPIF 1 < 0 的等差数列,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),
两式相减得: SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),
又 SKIPIF 1 < 0 适合上式,故 SKIPIF 1 < 0 .
另解:由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),
故 SKIPIF 1 < 0 为常数列,
则 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 .
31.已知在等差数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0
(2) SKIPIF 1 < 0 且 SKIPIF 1 < 0
【详解】(1)若等差数列公差为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 的通项公式 SKIPIF 1 < 0 .
(2)由题设 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 为偶数,则 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 为奇数,则 SKIPIF 1 < 0 ;
所以 SKIPIF 1 < 0 且 SKIPIF 1 < 0 .
32.记数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ,t;
(2)求数列 SKIPIF 1 < 0 的通项公式;
(3)求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ,t=2
(2) SKIPIF 1 < 0
(3) SKIPIF 1 < 0
【详解】(1)由 SKIPIF 1 < 0 ( SKIPIF 1 < 0 )可得, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 ,t=2.
(2)由 SKIPIF 1 < 0 ( SKIPIF 1 < 0 )可得,
当n为奇数时, SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 的奇数项是一个公差为3的等差数列,又 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ;
当n为偶数时, SKIPIF 1 < 0 ,所以数列 SKIPIF 1 < 0 的偶数项是一个公差为3的等差数列,又 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 .
(3) SKIPIF 1 < 0
SKIPIF 1 < 0 .
SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 .
33.数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)证明:数列 SKIPIF 1 < 0 为等比数列,并求出 SKIPIF 1 < 0 ;
(2)记数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 .若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1)证明见详解, SKIPIF 1 < 0 (2)1360
【详解】(1)因为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以首项为2,公比为2的等比数列,
故 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 .
(2)因为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时,则 SKIPIF 1 < 0 ,
两式相减得: SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ;
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 .
34.已知数列 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)记 SKIPIF 1 < 0 求数列 SKIPIF 1 < 0 的通项公式;
(2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和.
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项, SKIPIF 1 < 0 为公差的等差数列,
所以数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 的前n项和为
SKIPIF 1 < 0
= SKIPIF 1 < 0
SKIPIF 1 < 0 .
35.已知等比数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等差数列.
(1)求 SKIPIF 1 < 0 的值及数列 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【详解】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等差数列,
SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 是等比数列,
SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 数列 SKIPIF 1 < 0 的通项公式为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0 ,
则前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减可得 SKIPIF 1 < 0
SKIPIF 1 < 0 ,
化简可得 SKIPIF 1 < 0 .
36.已知数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通项公式;
(2)求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)由 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
整理得 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,
所以数列 SKIPIF 1 < 0 是以 SKIPIF 1 < 0 为首项,公比为 SKIPIF 1 < 0 的等比数列,
所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,从而
SKIPIF 1 < 0
SKIPIF 1 < 0 .
37.等比数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 成等差数列.
(1)求 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)设等比数列 SKIPIF 1 < 0 的公比为 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 成等差数列,
所以 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ;
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减可得 SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 ;
所以 SKIPIF 1 < 0 .
38.已知数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且满足 SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式;
(2)设 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【详解】(1)因为 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,两式作差得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
又当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
可知数列 SKIPIF 1 < 0 是以首项为1,公差为2的等差数列,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0
(2)由(1)知 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
39.已知数列 SKIPIF 1 < 0 满足: SKIPIF 1 < 0 .
(1)证明:数列 SKIPIF 1 < 0 是等比数列;
(2)设 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和 SKIPIF 1 < 0 .
【答案】(1)证明见解析(2) SKIPIF 1 < 0
【详解】(1)设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 是以4为首项,2为公比的等比数列,
则数列 SKIPIF 1 < 0 是等比数列.
(2)由(1)知 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
两式相减得: SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
40.已知正项等差数列 SKIPIF 1 < 0 的前n项和为 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 的通项公式及 SKIPIF 1 < 0 ;
(2)若 SKIPIF 1 < 0 ,求数列 SKIPIF 1 < 0 的前n项和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0
【详解】(1)设等差数列的首项为 SKIPIF 1 < 0 ,公差为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
化简为 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍),
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0
两式相减得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
新高考数学一轮复习计算题精练专题3 导数计算(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习计算题精练专题3 导数计算(2份打包,原卷版+解析版),文件包含新高考数学一轮复习计算题精练专题3导数计算原卷版doc、新高考数学一轮复习计算题精练专题3导数计算解析版doc等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
新高考数学一轮复习导学案第44讲 数列的求和(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习导学案第44讲 数列的求和(2份打包,原卷版+解析版),文件包含新高考一轮复习导学案第44讲数列的求和原卷版doc、新高考一轮复习导学案第44讲数列的求和解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
高考数学大一轮复习精讲精练(新高考地区)6.4数列求和6大题型(精练)(原卷版+解析): 这是一份高考数学大一轮复习精讲精练(新高考地区)6.4数列求和6大题型(精练)(原卷版+解析),共27页。