新高考数学一轮复习知识清单+巩固练习专题04 指对幂函数及函数与方程(2份打包,原卷版+解析版)
展开一、知识速览
二、考点速览
知识点1 根式与指数幂
1、根式
(1)一般地,如果 SKIPIF 1 < 0 ,那么x叫做a的n次方根,其中 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 。
式子 SKIPIF 1 < 0 叫做根式,这里n叫做根指数,a叫做被开方数.
(2) SKIPIF 1 < 0 的 SKIPIF 1 < 0 次方根的表示
当n是奇数时, SKIPIF 1 < 0 , SKIPIF 1 < 0 的值仅有一个,记为 SKIPIF 1 < 0
当n是偶数, = 1 \* GB3 ① SKIPIF 1 < 0 时, SKIPIF 1 < 0 的有两个值,且互为相反数,记为 SKIPIF 1 < 0 ;
= 2 \* GB3 ② SKIPIF 1 < 0 时, SKIPIF 1 < 0 不存在
(3)根式的性质( SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ): SKIPIF 1 < 0 ; SKIPIF 1 < 0
2、分数指数幂
(1)正分数指数幂:规定: SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
(2)负分数指数幂:规定: SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
(3)性质:0的正分数指数幂等于0,0的负分数指数幂没有意义
3、指数幂的运算性质
(1)无理数指数幂:一般地,无理数指数幂 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 为无理数)是一个确定的实数.
有理数指数幂的运算性质同样适用于无理数指数幂.
(2)指数幂的运算性质
① SKIPIF 1 < 0 . ② SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 . ③ SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
知识点2 指数函数及其性质
1、指数函数的概念
一般地,函数 SKIPIF 1 < 0 ( SKIPIF 1 < 0 且 SKIPIF 1 < 0 )叫做指数函数,
其中指数x是自变量,定义域是R,a是指数函数的底数.
2、指数函数的图象与性质
3、指数函数的常用技巧
(1)当底数大小不定时,必须分“ SKIPIF 1 < 0 ”和“ SKIPIF 1 < 0 ”两种情况讨论;
(2)指数函数的图象与底数大小的比较
如图是指数函数(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 ;(3) SKIPIF 1 < 0 ;(4) SKIPIF 1 < 0 的图象,
底数 SKIPIF 1 < 0 与1的之间的大小关系为 SKIPIF 1 < 0 ;
规律:在 SKIPIF 1 < 0 轴右(左)侧图象越高(低),其底数越大。
(3)指数函数 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的图象关于 SKIPIF 1 < 0 轴对称。
知识点3 对数与对数运算
1、对数的概念与性质
(1)对数的概念:如果ax=N(a>0,且a≠1),那么数x叫做以a为底数N的对数,记作x=lgaN,其中a叫做对数的底数,N叫做真数,lgaN叫做对数式。
(2)对数的性质
对数式与指数式的互化:ax=N⇔x=lgaN(a>0,且a≠1);
= 1 \* GB3 ①lga1=0, = 2 \* GB3 ②lgaa=1, = 3 \* GB3 ③algaN=N, = 4 \* GB3 ④ lgaaN=N (a>0,且a≠1).
指数式与对数式的关系
2、对数的的运算法则
如果a>0,且a≠1,M>0,N>0
= 1 \* GB3 ①lga(M·N)=lgaM+lgaN = 2 \* GB3 ②lgaeq \f(M,N)=lgaM-lgaN = 3 \* GB3 ③lgaMn=nlgaM(n∈R)
3、换底公式
(1)lgab=eq \f(lgcb,lgca)(a>0,且a≠1,c>0,且c≠1,b>0)
选用换底公式时,一般选用e或10作为底数。
(2)换底公式的三个重要结论
(1)lgab=eq \f(1,lgba); (2)lgambn=eq \f(n,m)lgab; (3)lgab·lgbc·lgcd=lgad.
知识点4 对数函数及其性质
1、对数函数的概念
(1)定义:函数 SKIPIF 1 < 0 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 )叫做对数函数,其中x是自变量,定义域为 SKIPIF 1 < 0 .
(2)特殊的对数函数
= 1 \* GB3 ①常用对数函数:以10为底的对数函数 SKIPIF 1 < 0 .
= 2 \* GB3 ②自然对数函数:以无理数e为底的对数函数 SKIPIF 1 < 0 .
2、对数函数的图象与性质
3、对数函数图象的常用结论
(1)函数y=lgax与的图象x轴对称;
(2)对数函数的图象与底数大小的关系
如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,
故0<c<d<1<a<b.
由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
知识点5 幂函数及其性质
1、幂函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
(1)幂函数的特征:xα的系数是1;xα的底数x是自变量;xα的指数α为常数.
只有满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等的函数都不是幂函数.
(2)幂函数的图象:同一坐标系中,幂函数y=x,y=x2,y=x3,y=x-1,的图象(如图).
2、幂函数的性质
(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);
(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;
(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限接近y轴,当x从原点趋向于+∞时,图象在x轴上方无限接近x轴;
(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y轴.
2、二次函数的图象和性质
知识点6 函数零点与二分法
1、函数零点的定义
(1)函数零点的概念:对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.
(2)函数零点与方程实数解的关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
【注意】函数的零点不是函数y=f(x)的图象与x轴的交点,而是交点的横坐标,
也就是说函数的零点不是一个点,而是一个数.
2、函数零点存在定理
(1)定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,
那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,
这个c也就是方程f(x)=0的根.
(2)两个重要推论
推论1:函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 上的图象是一条连续不断的曲线, SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 具有单调性,则函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 内只有一个零点.
推论2:函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 上的图象是一条连续不断的曲线,函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 内有零点,且函数 SKIPIF 1 < 0 具有单调性,则 SKIPIF 1 < 0
3、二分法
(1)二分法的定义:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
(2)给定精确度 SKIPIF 1 < 0 ,用二分法求函数 SKIPIF 1 < 0 零点 SKIPIF 1 < 0 的近似值的步骤
= 1 \* GB3 ①确定零点 SKIPIF 1 < 0 的初始区间 SKIPIF 1 < 0 ,验证 SKIPIF 1 < 0
= 2 \* GB3 ②求区间 SKIPIF 1 < 0 的中点 SKIPIF 1 < 0
= 3 \* GB3 ③计算 SKIPIF 1 < 0 ,进一步确定零点所在的区间:
若 SKIPIF 1 < 0 (此时 SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 就是函数的零点;
若 SKIPIF 1 < 0 (此时 SKIPIF 1 < 0 ),则令 SKIPIF 1 < 0 ;
若 SKIPIF 1 < 0 (此时 SKIPIF 1 < 0 ),则令 SKIPIF 1 < 0 .
= 4 \* GB3 ④判断是否达到精确度 SKIPIF 1 < 0 :若 SKIPIF 1 < 0 ,则得到零点近似值 SKIPIF 1 < 0 (或 SKIPIF 1 < 0 );否则重复(2)~(4)
【注意】初始区间的确定要包含函数的变号零点;
一、指对幂与对数式运算
1、指数幂运算的一般原则
(1)指数幂的运算首先将根式统一为分数指数幂,以便利用法则计算;
(2)先乘除后加减,负指数幂化成正指数幂的倒数;
(3)底数为负数,先确定符号;底数为小数,先化成分数;底数是带分数的,先化成假分数;
(4)运算结果不能同时包含根号和分数指数,也不能既有分母又含有负指数。
2、对数混合运算的一般原则
(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式 SKIPIF 1 < 0 化简合并;
(2)利用换底公式将不同底的对数式转化为同底的对数式;
(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;
(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;
(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式。
3、对数运算中的几个运算技巧
(1) SKIPIF 1 < 0 的应用技巧:在对数运算中如果出现 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,则一般利用提公因式、平方差公式、完全平方公式等使之出现 SKIPIF 1 < 0 ,再应用公式 SKIPIF 1 < 0 进行化简;
(2) SKIPIF 1 < 0 的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式 SKIPIF 1 < 0 化简;
(3)指对互化的转化技巧:对于将指数恒等式 SKIPIF 1 < 0 作为已知条件,求函数 SKIPIF 1 < 0 的值的问题,通常设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,将 SKIPIF 1 < 0 值带入函数 SKIPIF 1 < 0 求解。
【典例1】计算
(1) SKIPIF 1 < 0 . (2) SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2)2
【解析】(1) SKIPIF 1 < 0 = SKIPIF 1 < 0
= SKIPIF 1 < 0 = SKIPIF 1 < 0 = SKIPIF 1 < 0
(2)原式 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 =2
【典例2】化简求值:
(1) SKIPIF 1 < 0 ; (2) SKIPIF 1 < 0
【答案】(1) SKIPIF 1 < 0 ;(2)1
【解析】(1)原式= SKIPIF 1 < 0 = SKIPIF 1 < 0 = SKIPIF 1 < 0 = SKIPIF 1 < 0 .
(2)原式= SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
【典例3】计算
(1) SKIPIF 1 < 0 . (2) SKIPIF 1 < 0 .
【答案】(1)9;(2)5
【解析】(1) SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
二、指数型复合函数的值域
1、形如(,且)的函数求值域
换元法:令,将求原函数的值域转化为求的值域,但要注意“新元”的范围
2、形如(,且)的函数求值域
换元法:令,先求出的值域,再利用的单调性求出的值域。
【典例1】已知指数函数 SKIPIF 1 < 0 的图像经过点 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的值;
(2)当 SKIPIF 1 < 0 时,求函数 SKIPIF 1 < 0 的值域.
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【解析】(1)∵函数 SKIPIF 1 < 0 的图像经过点 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 .
(2)令 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递增,
故当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
故当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的值域为 SKIPIF 1 < 0 .
【典例2】已知函数 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)当 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 时,求函数 SKIPIF 1 < 0 的值域;
(2)若函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 ,求实数 SKIPIF 1 < 0 的值;
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【解析】(1)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
令 SKIPIF 1 < 0 ,则当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递减,在 SKIPIF 1 < 0 上单调递增,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的值域为 SKIPIF 1 < 0 .
(2)令 SKIPIF 1 < 0 ,则当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,对称轴为 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递增,
SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (舍);
当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递减,在 SKIPIF 1 < 0 上单调递增,
SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (舍)或 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递减,
SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (舍);
综上所述: SKIPIF 1 < 0 .
三、对数型复合函数的值域
1、形如(,且)的函数求值域
换元法:令,先求出的值域,再利用的单调性,再求出的值域。
2、形如(,且)的函数的值域
换元法:令,先求出的值域,再利用的单调性,求出的值域。
【典例1】已知函数 SKIPIF 1 < 0 且 SKIPIF 1 < 0 .
(1)当 SKIPIF 1 < 0 时,求 SKIPIF 1 < 0 的值域;
(2)若 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上的最大值大于 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的取值范围.
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【解析】(1)由 SKIPIF 1 < 0 得: SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的定义域为 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 (当且仅当 SKIPIF 1 < 0 时取等号),
SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的值域为 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ;
令 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上单调递减,在 SKIPIF 1 < 0 上单调递增,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的值域为 SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (舍);
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 ;
综上所述:实数 SKIPIF 1 < 0 的取值范围为 SKIPIF 1 < 0 .
【典例2】已知函数 SKIPIF 1 < 0 .
(1)若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的取值范围;
(2)当 SKIPIF 1 < 0 时, 求函数 SKIPIF 1 < 0 的值域.
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0
【解析】(1)设 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ;
(2)由(1)得,当 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以函数可转化为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最小值为 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 或 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最大值为 SKIPIF 1 < 0 ,
即当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最小值为 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 或 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最大值为 SKIPIF 1 < 0 ,
即函数 SKIPIF 1 < 0 的值域为 SKIPIF 1 < 0 .
四、指对幂比较大小的常见方法
1、单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较;
2、作差法、作商法:
(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;
(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法;
3、中间值法或1/0比较法:比较多个数的大小时,先利用“0”“1”作为分界点,然后再各部分内再利用函数的性质比较大小;
4、估值法:(1)估算要比较大小的两个值所在的大致区间;
(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值;
5、构造函数,运用函数的单调性比较:
构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数规律
(1)对于抽象函数,可以借助中心对称、轴对称、周期等性质来“去除f( )外衣”比较大小;
(2)有解析式函数,可以通过函数性质或者求导等,寻找函数的单调性、对称性,比较大小。
6、放缩法:
(1)对数,利用单调性,放缩底数,或者放缩真数;
(2)指数和幂函数结合来放缩;
(3)利用均值不等式的不等关系进行放缩;
(4)“数值逼近”是指一些无从下手的数据,如果分析会发现非常接近某些整数(主要是整数多一些),那么可以用该“整数”为变量,构造四舍五入函数关系。
【典例1】已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【解析】因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故选:A.
【典例2】已知 SKIPIF 1 < 0 ,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】A
【解析】 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .故选:A
【典例3】若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则a,b,c的大小关系为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】B
【解析】由题意: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
又 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .因为 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故选:B.
五、函数零点个数的判断方法
1、直接法:直接求零点,令 SKIPIF 1 < 0 ,如果能求出解,则有几个不同的解就有几个零点.
2、定理法:利用零点存在定理,函数的图象在区间 SKIPIF 1 < 0 上是连续不断的曲线,且 SKIPIF 1 < 0 ,
结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.
3、图象法:
(1)单个函数图象:利用图象交点的个数,画出函数 SKIPIF 1 < 0 的图象,函数 SKIPIF 1 < 0 的图象与 SKIPIF 1 < 0 轴交点的个数就是函数 SKIPIF 1 < 0 的零点个数;
(2)两个函数图象:将函数 SKIPIF 1 < 0 拆成两个函数 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的差,根据 SKIPIF 1 < 0 ,则函数 SKIPIF 1 < 0 的零点个数就是函数 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的图象的交点个数
4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;
若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数
【典例1】函数 SKIPIF 1 < 0 的零点个数为( )
A.0 B.1 C.2 D.3
【典例2】已知函数 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 .当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上的零点个数为 .
【典例3】已知函数 SKIPIF 1 < 0 ,则函数 SKIPIF 1 < 0 , SKIPIF 1 < 0 的零点个数( )
A.3个 B.5个 C.10个 D.9个
易错点1 指数与对数函数中忽略对底数的讨论
点拨:指数与对数函数问题中,其底数若不是确定的数值,需要对底数分a>1或0【典例1】若指数函数 SKIPIF 1 < 0 且 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上的最大值为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
【典例2】已知函数 SKIPIF 1 < 0 (a>0,且a≠1),若 SKIPIF 1 < 0 在区间[1,2]上恒成立,则实数a的取值范围是 .
【典例3】已知函数 SKIPIF 1 < 0 ( SKIPIF 1 < 0 且 SKIPIF 1 < 0 ),若对任意 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则实数a的取值范围为 .
易错点2 求复合函数单调性时忽略定义域
点拨:求复合函数单调区间一般步骤是①求函数的定义域;②作出内层函数的图象;③用“同增异减”法则写单调区间。解此类题通常会出现以下两类错误:一是忽视定义域;二是 “同增异减”法则不会或法则用错。
【典例1】函数 SKIPIF 1 < 0 的单调递减区间为
【典例2】已知函数 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,则此函数的单调递增区间是 .
易错点3 忽视转化的等价性
点拨:等价转化是数学的重要思想方法之一,处理得当会起到意想不到的效果,但等价转化的前提是转化的等价性,反之会出现各种离奇的错误。
【典例1】“ SKIPIF 1 < 0 ”是“直线 SKIPIF 1 < 0 与曲线 SKIPIF 1 < 0 有交点”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
【典例2】关于x的方程 SKIPIF 1 < 0 恰有一根在区间 SKIPIF 1 < 0 内,则实数m的取值范围是 )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
易错点4 函数零点定理的理解不准确
点拨:函数零点定理是指如果函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 上的图象是一条连续不断的曲线,并且有 SKIPIF 1 < 0 ,那么函数 SKIPIF 1 < 0 在区间 SKIPIF 1 < 0 内有零点。解决函数零点问题常用方法有定理法、图象法和方程法。函数零点又分为“变号零点”和“不变号零点”,函数零点定理仅适用于“变号零点”,对“不变号零点”无能为力。
【典例1】函数 SKIPIF 1 < 0 的零点所在的大致区间为 )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【典例2】函数 SKIPIF 1 < 0 的一个零点在区间 SKIPIF 1 < 0 内,则实数a的取值范围是 )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
SKIPIF 1 < 0
SKIPIF 1 < 0
图象
图像特征
在 SKIPIF 1 < 0 轴的上方,过定点 SKIPIF 1 < 0
当 SKIPIF 1 < 0 逐渐增大时,图象逐渐上升
当 SKIPIF 1 < 0 逐渐增大时,图象逐渐下降
性质
定义域
SKIPIF 1 < 0
值域
SKIPIF 1 < 0
单调性
在 SKIPIF 1 < 0 上是增函数
在 SKIPIF 1 < 0 上是减函数
奇偶性
非奇非偶函数
范围
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ;
图象
a>1
0<a<1
性质
定义域:(0,+∞)
值域:R
当x=1时,y=0,即过定点(1,0)
当0<x<1时,y<0;
当x>1时,y>0
当0<x<1时,y>0;
当x>1时,y<0
在(0,+∞)上为增函数
在(0,+∞)上为减函数
函数
y=ax2+bx+c(a>0)
y=ax2+bx+c(a<0)
图象(抛物线)
定义域
R
值域
eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(4ac-b2,4a),+∞))
eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(4ac-b2,4a)))
对称轴
x=-eq \f(b,2a)
顶点坐标
eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(b,2a),\f(4ac-b2,4a)))
奇偶性
当b=0时是偶函数,当b≠0时是非奇非偶函数
单调性
在eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(b,2a)))上是减函数;
在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上是增函数
在eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(b,2a)))上是增函数;
在eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(b,2a),+∞))上是减函数
新高考数学一轮复习知识清单+巩固练习专题01 集合与常用逻辑用语(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习知识清单+巩固练习专题01 集合与常用逻辑用语(2份打包,原卷版+解析版),文件包含新高考数学一轮复习知识清单+巩固练习专题01集合与常用逻辑用语原卷版doc、新高考数学一轮复习知识清单+巩固练习专题01集合与常用逻辑用语解析版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
新高考数学二轮复习专题培优练习专题07 函数与方程(2份打包,原卷版+解析版): 这是一份新高考数学二轮复习专题培优练习专题07 函数与方程(2份打包,原卷版+解析版),文件包含新高考数学二轮复习专题培优练习专题07函数与方程原卷版doc、新高考数学二轮复习专题培优练习专题07函数与方程解析版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
高考数学一轮复习核心考点讲与练(新高考专用)考点04指对幂函数(核心考点讲与练)(原卷版+解析): 这是一份高考数学一轮复习核心考点讲与练(新高考专用)考点04指对幂函数(核心考点讲与练)(原卷版+解析),共49页。试卷主要包含了幂函数,分数指数幂,指数函数及其性质,对数的概念,对数的性质、换底公式与运算性质,对数函数及其性质,指数、对数、幂函数模型性质比较等内容,欢迎下载使用。