内蒙古自治区包头市2023-2024学年八年级下学期期末数学试卷(含答案)
展开一、单选题
1.2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A.B.C.D.
2.不等式的解集在数轴上表示正确的是( )
A.B.
C.D.
3.如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是( )
A.①②B.①③C.②④D.③④
4.若,则下列不等式一定成立的是( )
A.B.C.D.
5.关于x的二次三项式能用完全平方公式分解因式,则a的值是( )
A.B.C.12D.
6.如图,与关于点C成中心对称,,,,则的长为( )
A.5B.6C.7D.8
7.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得( )
A.B.
C.D.
二、填空题
8.若分式的值为0,则x的值为______.
9.如图,在中,,,延长至M,则______°.
10.已知,,则的值为______.
11.如图,平行四边形的顶点O,A,C的坐标分别是,,.则顶点B的横坐标是______.
12.如图,在中,点D、E分别是边AB、BC的中点.若的周长是6,则的周长是______.
13.如图,在中,,,,BC边的垂直平分线DE交AB于点D,连接CD,则AB的长为______.
14.如图,在中,,,,D为AC上一点,若是的角平分线,则______.
三、解答题
15.(1)分解因式:.
(2)解不等式组:,并把它的解集表示在数轴上.
16.(1)计算:;
(2)解方程:.
17.小王去市场采购同一种商品.第一次采购用了2400元,第二饮采购用了3000元,第一次采购时该商品的价格是元/件,第二次采购时该商品的价格是元/件.
(1)求小王两次共采购了多少件该商品;
(2)小王第一次采购该商品的件数是第二次采购的件数的几倍?
18.如图,在中,,.将绕点A逆时针旋转得到,点B的对应点为点D,连接,与相交于点O.
(1)若,求的长;
(2)求的度数.
19.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数有x人(),甲、乙两家旅行社的服务质量相同,且报价都是每人1000元.经过协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八五折优惠.
(1)设该单位选择甲旅行社所需的费用为元,选择乙旅行社所需的费用为元,分别写出,与x之间的函数表达式;
(2)你认为该单位选择哪一家旅行社支付的旅游费用较少?
20.如图,的对角线与相交于点O,分别是边,的中点,连接,.求证:四边形是平行四边形.(请用两种证法解答)
21.如图,在中,,D为斜边上一点,连接,且,F是边上一点(不与点B,C重合),连接,过点B作交的延长线于点E,连接.
(1)求证:;
(2)如图1,若,求证:;
(3)如图2,若,,,求的长.
参考答案
1.答案:D
解析:根据题意,得
不能由平移得到,
故A不符合题意;
不能由平移得到,
故B不符合题意;
不能由平移得到,
故C不符合题意;
能由平移得到,
故D符合题意;
故选D.
2.答案:C
解析:移项得,,
合并同类项得,,
系数化为1得,,
在数轴上表示为:
故选:C.
3.答案:B
解析:根据多边形的内角和定理可知:①剪开后的两个图形是四边形,它们的内角和都是360°,③剪开后的两个图形是三角形,它们的内角和都是180°;因此可知①③剪开后的两个图形的内角和相等,
故选B.
4.答案:C
解析:A.若,则,但不一定成立,故选项错误,不符合题意;
B.若,则,但不一定成立,故选项错误,不符合题意;
C.若,则,故选项正确,符合题意;
D.若,则或,但不一定成立,故选项错误,不符合题意.
故选:C.
5.答案:D
解析:∵关于x的二次三项式能用完全平方公式分解因式,
.
故选D.
6.答案:A
解析:∵与关于点C成中心对称,
∴,
∴,,,
∴,
∴,
故选:A.
7.答案:A
解析:设安排x人加工A零件,加工B零件的是,
,
所以选A.
8.答案:
解析:由题意可知:且,
解得且.
故答案为:.
9.答案:110
解析:∵,,
∴
∴
故答案为:110.
10.答案:8
解析:∵,,
∴
故答案为:8.
11.答案:4
解析:延长交y轴于点D,
四边形是平行四边形,
,,
轴,
轴,
,,
,,
点B的横坐标是:4;
故答案为:4.
12.答案:12
解析:∵点D、E分别是边AB,BC的中点,
∴DE是三角形BC的中位线,,,
∴,
又∵,,
∴,
即的周长是的周长的2倍,
∵的周长是6,
∴的周长是:.
故答案为:12.
13.答案:
解析:∵DE是BC的垂直平分线,
∴,
∴,
∴,
∵,
∴,
∴,
由勾股定理得:,
∴,
∴,
故答案为:.
14.答案:5
解析:如图,过点D作的垂线,垂足为P,
在中,∵,,
∴,
∵是的角平分线,
∴,
∵,
∴,
∴,,
设,
在中,∵,,
∴,
∴,
∴.
故答案为:5.
15.答案:(1)
(2),数轴见解析
解析:(1).
(2)解不等式,得,
解不等式,得.
在同一条数轴表示不等式组的解集:
因此,原不等式组的解集是.
16.答案:(1)1
(2)
解析:(1);
(2)方程两边都乘,得,
解得,
检验:当时,,
∴原方程的根为.
17.答案:(1)两次共采购的件数为件
(2)第一次采购该商品的件数是第二次采购的件数的1.2倍
解析:(1)第一次采购该商品的件数为,
第二次采购该商品的件数为,
所以,两次共采购的件数为(件).
(2),
第一次采购该商品的件数是第二次采购的件数的1.2倍.
18.答案:(1)6
(2)
解析:(1)∵将绕点A逆时针旋转得到,
,,
是等边三角形,
.
,
.
(2)∵将绕点A逆时针旋转得到,
,.
,,
,.
是等边三角形,
,
.
是的外角,
.
19.答案:(1)甲旅行社的费用;乙旅行社的费用
(2)当时,选择乙旅行社费用较少;当时,选择甲旅行社费用较少
解析:(1);
.
(2)由,得,解得;
由,得,解得;
由,,解得.
,
当时,甲、乙两家旅行社的收费相同;
当时,选择乙旅行社费用较少;
当时,选择甲旅行社费用较少.
20.答案:证明见解析
解析:证法一:
∵四边形是平行四边形,
,
O是的中点.
∵M,N分别是边,的中点,
,都是的中位线,
,,
,,
四边形是平行四边形.
证法二:∵四边形是平行四边形,
,
O是的中点.
∵N是边的中点,
是的中位线,
,.
∵M是边的中点,
.
.
,
,
四边形是平行四边形.
21.答案:(1)证明见解析
(2)证明见解析
(3)
解析:(1)证明:在中,,
,.
,
.
(2)证明:如图.
,,
,,
.
,
,即垂直平分,
.
,
,
.
,,
.
(3)如图.
,,
.
,
.
,
是等边三角形,
.
,
.
,,
.
,
是直角三角形.
在中,
,
,
设,则,
,
,
,
.
在中,,
.
内蒙古自治区包头市2023-2024学年八年级下学期期末数学试题(解析版): 这是一份内蒙古自治区包头市2023-2024学年八年级下学期期末数学试题(解析版),共16页。试卷主要包含了本试卷共4页,满分100分,答题时,将答案写在答题卡上,考试结束后,将答题卡交回等内容,欢迎下载使用。
内蒙古自治区包头市2023-2024学年八年级下学期期末数学试题: 这是一份内蒙古自治区包头市2023-2024学年八年级下学期期末数学试题,共8页。试卷主要包含了本试卷共4页,满分100分,答题时,将答案写在答题卡上,考试结束后,将答题卡交回,已知,,则的值为______等内容,欢迎下载使用。
内蒙古自治区包头市2023-2024学年八年级下学期7月期末考试数学试题: 这是一份内蒙古自治区包头市2023-2024学年八年级下学期7月期末考试数学试题,共6页。