|试卷下载
搜索
    上传资料 赚现金
    2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案)
    立即下载
    加入资料篮
    2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案)01
    2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案)02
    2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案)

    展开
    这是一份2023-2024学年内蒙古自治区通辽市高二下学期期末质量检测数学试卷(含答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
    1.若2∈{x|ax2+3x+a2−3>0},则a的取值范围为( )
    A. −3C. a⩽−3或a⩾−1D. a<−3或a>−1
    2.若函数fx= 1−x2+lg2x−1,则fx的定义域为( )
    A. xx>0B. xx≤1C. x03.下列运算中正确的是( )
    A. lg23=lg2lg3B. 4a3⋅ a=a116
    C. a2=aD. 12lg213+lnlne=3
    4.函数fx=ex−e−x1−x2的图象大致为( )
    A. B. C. D.
    5.已知fx=lg12x2−ax+3a在2,+∞上为减函数,则实数a的取值范围是( )
    A. −∞,4B. −4,4C. 0,2D. 0,4
    6.已知A,B为同一次试验中的两个随机事件,且PA>0,PB>0,命题甲:若PBA+PB=1,则事件A与B相互独立;命题乙:“A与B相互独立”是“PAB=PAB”的充分不必要条件;则命题( )
    A. 甲乙都是真命题B. 甲是真命题,乙是假命题
    C. 甲是假命题,乙是真命题D. 甲乙都是假命题
    7.已知a=lg32,b=lg43,c=23,则( )
    A. a8.已知函数fx=xex,x<0−x2+2x,x≥0,若关于x的方程f2x−2+tfx+2t=0有3个不同的实数根,则实数t的取值范围为( )
    A. −∞,−1eB. −1e,0C. −1e,1D. −e,2
    二、多选题:本题共3小题,共15分。在每小题给出的选项中,有多项符合题目要求。
    9.在( x−1x)6的展开式中,下列叙述中正确的是( )
    A. 二项式系数之和为32B. 各项系数之和为0
    C. 常数项为15D. x−3的系数为15
    10.已知不等式ax2+bx+c>0的解集为x∣2A. abc>0
    B. a+b+c>0
    C. 函数f(x)=ax2+bx+c有两个零点2和3
    D. cx2+bx+a<0的解集为{x|x<13或x>12
    11.已知函数f(x)的定义域为R,且∀x∈R,都有f(−3+x)+f(−1−x)=0,f−32+x=f−12−x,f(−5)=−2,f72=−34,当x∈[−1,0]时,f(x)=ax2+bx,则下列说法正确的是( )
    A. 函数f(x)的图象关于点(−2,0)对称
    B. f(1)=2
    C. f(2023)+f(2024)+f(2025)=2
    D. 函数f(x)与函数y=|ln|x||的图象有8个不同的公共点
    三、填空题:本题共3小题,每小题5分,共15分。
    12.已知x>3,则x+4x−3的最小值为_____.
    13.某地教育局准备从本地区选聘6位教育家型教师到外地3所学校支教,要求每所学校至少去1位教师,每位教师只能去1所学校,且甲乙两位教师必须去同一所学校,则不同的分配方案种数为_________.
    14.若对任意的x>0,不等式(x−a)ex+1+a≥0恒成立,则a的最大整数值为_____.
    四、解答题:本题共5小题,共60分。解答应写出文字说明,证明过程或演算步骤。
    15.(本小题12分)
    已知函数f(x)=−x2+(a−1)x−a+2.
    (Ⅰ)若不等式f(x)≤2对一切实数x恒成立,求a的取值范围;
    (Ⅱ)解关于x的不等式f(x)>0.
    16.(本小题12分)
    定义在0,+∞上的函数f(x)满足f(xy)=f(x)+f(y),f(3)=1,且x>1时,f(x)>0.
    (1)求f(1);
    (2)判断f(x)在0,+∞上的单调性;
    (3)若f(x)+f(x−8)≤2,求x的取值范围.
    17.(本小题12分)
    已知函数fx=a⋅3x+13x−1是定义域为R的偶函数.
    (1)求a的值;
    (2)若gx=9x+9−x+mfx+m2−1,求函数gx的最小值.
    18.(本小题12分)
    某高中学校为了解学生参加体育锻炼的情况,统计了全校所有学生在一年内每周参加体育锻炼的次数,现随机抽取了60名同学在某一周参加体育锻炼的数据,结果如下表:
    (1)若将一周参加体育锻炼次数为3次及3次以上的,称为“经常锻炼”,其余的称为“不经常锻炼”.请完成以下2×2列联表,并依据小概率值α=0.1的独立性检验,能否认为性别因素与学生体育锻炼的经常性有关系;
    (2)若将一周参加体育锻炼次数为0次的称为“极度缺乏锻炼”,“极度缺乏锻炼”会导致肥胖等诸多健康问题.以样本频率估计概率,在全校抽取20名同学,其中“极度缺乏锻炼”的人数为X,求E(X)和D(X);
    (3)若将一周参加体育锻炼6次或7次的同学称为“运动爱好者”,为进一步了解他们的生活习惯,在样本的10名“运动爱好者”中,随机抽取3人进行访谈,设抽取的3人中男生人数为Y,求Y的分布列和数学期望.
    附:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.
    19.(本小题12分)
    设函数fx=mx−1ex−ax2,m>0.
    (1)当a=0时,求f(x)的极值;
    (2)当m=1时,讨论f(x)的单调性;
    (3)在(1)条件下,若对任意x∈−1,+∞,有lnfx+2≤2ex+1恒成立,求m的最大值.
    参考答案
    1.D
    2.C
    3.D
    4.C
    5.B
    6.B
    7.C
    8.B
    9.BCD
    10.ACD
    11.ABD
    12.7
    13.150
    14.2
    15.解:(Ⅰ)由题意,不等式f(x)≤2对于一切实数x恒成立,
    等价于x2−(a−1)x+a≥0对于一切实数x恒成立.
    所以Δ≤0⇔(a−1)2−4a≤0⇔3−2 2≤a≤3+2 2.
    (Ⅱ)不等式f(x)>0等价于x2−(a−1)x+a−2<0⇔[x−(a−2)](x−1)<0.
    当a−2>1即a>3时,不等式可化为1当a−2=1即a=3时,不等式可化为(x−1)2<0,不等式的解集为⌀;
    当a−2<1即a<3时,不等式可化为a−2综上所述:当a<3时,不等式的解集为xa−2当a=3时,不等式的解集为⌀;
    当a>3时,不等式的解集为x1
    16.解:(1) ∵ f(x) 满足 f(xy)=f(x)+f(y) ,
    令 y=1 , ∴f(x)=f(x)+f(1) , ∴f(1)=0 .
    (2)设 0f(x2)−f(x1)=fx2x1⋅x1−f(x1)=fx2x1+f(x1)−f(x1)=fx2x1 ,
    ∵01 ,又 x>1 时, f(x)>0 ,
    ∴f(x2x1)>0 ,
    故 f(x2)−f(x1)>0 即 f(x1)∴y=f(x) 在 0,+∞ 上单调递增.
    (3)由 f(3)=1 ,且 f(xy)=f(x)+f(y) ,得 2=f(3)+f(3)=f(9) ,
    则 f(x)+f(x−8)≤2 可化为 fx(x−8)≤f(9) ,
    由 (2) 知 y=f(x) 在 0,+∞ 上单调递增,
    ∴x>0,x−8>0,x(x−8)≤9,
    解得 8故 x 的取值范围为 8,9 .
    17.解:(1)由偶函数定义知f(−x)=f(x),即a⋅3−x+13−x−1=a⋅3−x+3⋅3x=a⋅3x+3⋅3−x,
    所以(a−3)(3x−3−x)=0对∀x∈R成立,所以a=3.
    (2)由题意知g(x)=9x+9−x+mf(x)+m2−1=32x+3−2x+m(3⋅3x+13x−1)+m2−1,
    令u=3x+3−x,u≥2,所以u2=(3x+3−x)2=32x+3−2x+2,所以32x+3−2x=u2−2,
    所以y=g(x)=u2−2+3mu+m2−1=u2+3mu+m2−3,u≥2.
    当−3m2≤2,即m≥−43时,y=u2+3mu+m2−3在[2,+∞)上单调递增,
    所以ymin=22+3m×2+m2−3=m2+6m+1,即g(x)min=m2+6m+1;
    当−3m2>2,即m<−43时,y=u2+3mu+m2−3在(2,−3m2)上单调递减,在(−3m2,+∞)上单调递增,
    所以ymin=(−3m2)2+3m×(−3m2)+m2−3=−54m2−3,即g(x)min=−54m2−3.
    综上,g(x)min=−54m2−3,m<−43m2+6m+1,m⩾−43.
    18.解:(1)2×2列联表
    零假设为H0:性别与锻炼情况独立,即性别因素与学生体育锻炼的经常性无关,
    根据列联表的数据计算
    χ​2=60(7×16−23×14)221×39×30×30=60×(7×30)221×39×30×30=14039≈3.590>2.706=χ0.1,
    根据小概率值α=0.1的独立性检验,推断H0不成立,
    即性别因素与学生体育锻炼的经常性有关系,此推断犯错误的概率不超过0.1;
    (2)因学校总学生数远大于所抽取的学生数,故X近似服从二项分布,
    随机抽取一人为“极度缺乏锻炼”者的概率p=560=112,
    X~B(20,112),
    故E(X)=20×112=53,
    D(X)=20×112×1112=5536;
    (3)10名“运动爱好者”有7名男生,3名女生,Y服从超几何分布:
    P(Y=0)=C70C33C103=1120,P(Y=1)=C71C32C103=21120=740,
    P(Y=2)=C72C31C103=21×3120=2140,P(Y=3)=C73C30C103=35120=724,
    故Y的分布列为:
    E(Y)=3×710=2.1.
    19.解:(1)当a=0时,f(x)=m(x−1)ex,则f′(x)=mxex,m>0,
    令f′(x)>0,得x>0,令f′(x)<0,得x<0.
    故f(x)在(0,+∞)上单调递增,在(−∞,0)上单调递减,
    ∴f(x)在x=0处取得极小值f(0)=−m,无极大值.
    (2)当m=1时,f(x)=(x−1)ex−ax2,则f′(x)=xex−2ax=(ex−2a)x,
    当a≤0时,ex−2a>0,
    令f′(x)<0⇒x<0,f′(x)>0⇒x>0,
    所以函数f(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增;
    当a>0时,由f′(x)=0,解得x=ln2a或0,
    若012,令f′(x)<0⇒00⇒x<0或x>ln2a,
    所以函数f(x)在(0,ln2a)上单调递减,在(−∞,0)、(ln2a,+∞)上单调递增;
    若0=ln2a,即a=12,则f′(x)≥0,所以函数f(x)在R上单调递增;
    若0>ln2a,即00⇒x0,
    所以函数f(x)在(ln2a,0)上单调递减,在(−∞,ln2a)、(0,+∞)上单调递增.
    (3)lnf(x+2)≤2(ex+1)对∀x∈(−1,+∞)恒成立,即lnm≤2ex−ln(x+1)−x对
    ∀x∈(−1,+∞)恒成立.
    令g(x)=2ex−ln(x+1)−x(x>−1),则只需lnm≤g(x)min即可.
    g′(x)=2ex−1x+1−1(x>−1).
    易知y=2ex,y=−1x+1−1均在(−1,+∞)上单调递增,故g′(x)在(−1,+∞)上单调递增且
    g′(0)=0.
    ∴当x∈(−1,0)时,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,g′(x)>0,g(x)单调递
    增.∴g(x)min=g(0)=2.
    故lnm≤2⇒0一周参加体育锻炼次数
    0
    1
    2
    3
    4
    5
    6
    7
    合计
    男生人数
    1
    2
    4
    5
    6
    5
    4
    3
    30
    女生人数
    4
    5
    5
    6
    4
    3
    2
    1
    30
    合计
    5
    7
    9
    11
    10
    8
    6
    4
    60
    性别
    锻炼
    合计
    不经常
    经常
    男生
    女生
    合计
    α
    0.1
    0.05
    0.01

    2.706
    3.841
    6.635
    相关试卷

    广西桂林市2023-2024学年高二下学期期末质量检测数学试卷(含答案): 这是一份广西桂林市2023-2024学年高二下学期期末质量检测数学试卷(含答案),共15页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    甘肃省2023-2024学年高二下学期期末教学质量检测数学试卷(含答案): 这是一份甘肃省2023-2024学年高二下学期期末教学质量检测数学试卷(含答案),共12页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江西省景德镇市高二下学期期末质量检测数学试卷(含答案): 这是一份2023-2024学年江西省景德镇市高二下学期期末质量检测数学试卷(含答案),共8页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map