- 专题18 利用导数研究不等式恒(能)成立问题-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 1 次下载
- 专题19 利用导数研究函数的零点-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 1 次下载
- 专题21 同角三角函数的基本关系及诱导公式-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 1 次下载
- 专题22 两角和与差的正弦、余弦和正切-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 1 次下载
- 专题23 简单的三角恒等变换-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 1 次下载
专题20 任意角和弧度制及三角函数的概念-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)
展开【知识梳理】2
【真题自测】3
【考点突破】4
【考点1】象限角及终边相同的角4
【考点2】弧度制及其应用6
【考点3】三角函数的定义及应用8
【分层检测】9
【基础篇】9
【能力篇】12
【培优篇】13
考试要求:
1.了解任意角的概念和弧度制的概念.
2.能进行弧度与角度的互化.
3.理解任意角三角函数(正弦、余弦、正切)的定义.
知识梳理
1.角的概念的推广
(1)定义:角可以看成一条射线绕着它的端点旋转所形成的图形.
(2)分类eq \b\lc\{(\a\vs4\al\c1(按旋转方向不同分为正角、负角、零角.,按终边位置不同分为象限角和轴线角.))
(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.
2.弧度制的定义和公式
(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1 rad.
(2)公式
3.任意角的三角函数
(1)定义
(2)定义的推广
设P(x,y)是角α终边上异于原点的任一点,它到原点的距离为r(r>0),那么sin α=eq \f(y,r);cs α=eq \f(x,r),tan α=eq \f(y,x)(x≠0).
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.
2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制必须一致,不可混用.
3.象限角
4.轴线角
真题自测
一、单选题
1.(2023·全国·高考真题)已知函数在区间单调递增,直线和为函数的图像的两条相邻对称轴,则( )
A.B.C.D.
2.(2022·全国·高考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,( )
A.B.C.D.
二、填空题
3.(2023·北京·高考真题)已知命题若为第一象限角,且,则.能说明p为假命题的一组的值为 , .
4.(2023·全国·高考真题)已知函数,如图A,B是直线与曲线的两个交点,若,则 .
5.(2023·全国·高考真题)若,则 .
6.(2021·北京·高考真题)若点关于轴对称点为,写出的一个取值为 .
考点突破
【考点1】象限角及终边相同的角
一、单选题
1.(23-24高一下·河南·阶段练习)如图,终边落在阴影部分(包括边界)的角的集合是( )
A.B.
C.D.
2.(2022·全国·模拟预测)已知角第二象限角,且,则角是( )
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
二、多选题
3.(23-24高一上·吉林长春·期末)下列说法正确的是( )
A.“为第一象限角”是“为第一象限角或第三象限角”的充分不必要条件
B.“,”是“”的充要条件
C.设,,则“”是“”的充分不必要条件
D.“”是“”的必要不充分条件
4.(22-23高二下·吉林长春·期末)下列说法正确的是( )
A.轴截面为等腰直角三角形的圆锥,其侧面展开图的圆心角的弧度数为
B.若,则
C.已知为锐角,,角的终边上有一点,则
D.在范围内,与角终边相同的角是和
三、填空题
5.(2022·河南开封·三模)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于直线对称.若,则 .
6.(2022·全国·模拟预测)已知的顶点为坐标原点,始边与x轴非负半轴重合,终边在第二象限,,则的值为 .
反思提升:
(1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过集合中的参数k(k∈Z)赋值来求得所需的角.
(2)确定kα,eq \f(α,k)(k∈N*)的终边位置的方法
先写出kα或eq \f(α,k)的范围,然后根据k的可能取值确定kα或eq \f(α,k)的终边所在的位置.
【考点2】弧度制及其应用
一、单选题
1.(2023·陕西安康·三模)羽毛球运动是一项全民喜爱的体育运动,标准的羽毛球由16根羽毛固定在球托上,测得每根羽毛在球托之外的长为,球托之外由羽毛围成的部分可看成一个圆台的侧面,测得顶端所围成圆的直径是,底部所围成圆的直径是,据此可估算得球托之外羽毛所在曲面的展开图的圆心角为( )
A.B.C.D.
2.(2024·全国·模拟预测)石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环,如图(2),砖雕厚度为6cm,,,所对的圆心角为直角,则该梅花砖雕的表面积为(单位:)( )
A.B.C.D.
二、多选题
3.(2024·全国·模拟预测)如图,设单位圆与轴的正半轴相交于点,以轴的非负半轴为始边作锐角,,,它们的终边分别与单位圆相交于点,,.若,则下列说法正确的是( )
A.当时,的面积为
B.当时,扇形的面积为
C.当时,四边形的面积为
D.四边形面积的最大值为1
4.(23-24高三上·云南昆明·阶段练习)质点A,B在以坐标原点O为圆心,半径为1的圆上同时出发做逆时针匀速圆周运动,点A的起点在射线()与圆O的交点处,点A的角速度为,点B的起点在圆O与x轴正半轴的交点处,点B的角速度为,则下列说法正确的是( )
A.在末时,点B的坐标为
B.在末时,劣弧的长为
C.在末时,点A与点B重合
D.当点A与点B重合时,点A的坐标可以为
三、填空题
5.(2023·上海普陀·一模)若圆上的一段圆弧长与该圆的内接正六边形的边长相等,则这段圆弧所对的圆心角的大小为 .
6.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段与分别以为直径的半圆弧组成)表示一条步道.其中的点是线段上的动点,点O为线段的中点,点在以为直径的半圆弧上,且均为直角.若百米,则此步道的最大长度为 百米.
反思提升:
应用弧度制解决问题时应注意:
(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.
(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.
(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
【考点3】三角函数的定义及应用
一、单选题
1.(2024·湖北·模拟预测)在直角坐标系中,绕原点将轴的正半轴逆时针旋转角交单位圆于点、顺时针旋转角交单位圆于点,若点的纵坐标为,且的面积为,则点的纵坐标为( )
A.B.C.D.
2.(2024·新疆乌鲁木齐·二模)已知角终边上点坐标为,则( )
A.B.C.D.
二、多选题
3.(2024·广东广州·模拟预测)下列命题正确的是( )
A.“是第二象限角或第三象限角”,“”,则是的充分不必要条件
B.若为第一象限角,则
C.在中,若,则为锐角三角形
D.已知,且,则
4.(2024·河北保定·二模)一般地,任意给定一个角,它的终边与单位圆的交点P的坐标,无论是横坐标x还是纵坐标y,都是唯一确定的,所以点P的横坐标x、纵坐标y都是角的函数.下面给出这些函数的定义:
①把点P的纵坐标y叫作的正弦函数,记作,即;
②把点P的横坐标x叫作的余弦函数,记作,即;
③把点P的纵坐标y的倒数叫作的余割,记作,即;
④把点P的横坐标x的倒数叫作的正割,记作,即.
下列结论正确的有( )
A.
B.
C.函数的定义域为
D.
三、填空题
5.(2024·全国·模拟预测)在平面直角坐标系中,若角的顶点为原点,始边为轴非负半轴,终边经过点,则 .
6.(2023·江西赣州·二模)已知为锐角,满足,则 .
反思提升:
1.三角函数定义的应用
(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.
(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.
2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.
分层检测
【基础篇】
一、单选题
1.(2023·安徽·模拟预测)已知角终边上有一点,则为( )
A.第一象限角B.第二象限角
C.第三象限角D.第四象限角
2.(23-24高一上·山东菏泽·期末)集合,,,则集合中的元素个数为( )
A.B.C.D.
3.(2024·湖南·一模)出土于鲁国故城遗址的“出廓双龙勾玉纹黄玉璜”(图1)的璜身满刻勾云纹,体扁平,呈扇面状,黄身外耧空雕饰“”型双龙,造型精美.现要计算璜身面积(厚度忽略不计),测得各项数据(图2):,若,则璜身(即曲边四边形)面积近似为( )
A.B.C.D.
4.(2024·北京房山·一模)已知角的终边经过点,把角的终边绕原点O逆时针旋转得到角的终边,则( )
A.B.C.D.
二、多选题
5.(2022·福建·三模)若满足,,则可以是( )
A.B.C.D.
6.(23-24高一上·吉林延边·期末)已知函数且的图象经过定点,且点在角的终边上,则的值可能是( )
A.B.C.D.
7.(22-23高一下·浙江杭州·期末)如图,质点和在单位圆上逆时针作匀速圆周运动.若和同时出发,的角速度为,起点位置坐标为,B的角速度为,起点位置坐标为,则( )
A.在末,点的坐标为
B.在末,扇形的弧长为
C.在末,点在单位圆上第二次重合
D.面积的最大值为
三、填空题
8.(2021·四川泸州·一模)在平面直角坐标系中,角与角均以为始边,它们的终边关于轴对称.若,则 .
9.(2023·上海·模拟预测)在平面直角坐标系中,角以Ox为始边,且.把角α的终边绕端点O逆时针方向旋转弧度,这时终边对应的角是,则 ;
10.(2024·湖北·模拟预测)函数,设为的最小正周期,若,则 .
四、解答题
11.(2021·上海闵行·二模)某植物园中有一块等腰三角形的花圃,腰长为20米,顶角为30°,现在花圃内修一条步行道(步行道的宽度忽略不计),将其分成面积相等的两部分,分别种植玫瑰和百合.步行道用曲线表示(D、E两点分别在腰、上,以下结果精确到0.01).
(1)如果曲线是以A为圆心的一段圆弧(如图1),求的长;
(2)如果曲线是直道(如图2),求的最小值,并求此时直道的长度.
12.(2023·贵州·模拟预测)如图所示,角的终边与单位圆交于点,将绕原点按逆时针方向旋转后与圆交于点.
(1)求;
(2)若的内角,,所对的边分别为,,,,,,求.
【能力篇】
一、单选题
1.(23-24高三上·湖南长沙·阶段练习)“且”是“为第三象限角”的( )
A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件
二、多选题
2.(2024·安徽芜湖·二模)在平面直角坐标系xOy中,角θ以坐标原点O为顶点,以x轴的非负半轴为始边,其终边经过点,,定义,,则( )
A.B.
C.若,则D.是周期函数
三、填空题
3.(2024·内蒙古呼和浩特·一模)用一个圆心角为,面积为的扇形(为圆心)用成一个圆锥(点恰好重合),该圆锥顶点为,底面圆的直径为,则的值为 .
四、解答题
4.(2022·上海虹口·二模)如图,某公园拟划出形如平行四边形的区域进行绿化,在此绿化区域中,分别以和为圆心角的两个扇形区域种植花卉,且这两个扇形的圆弧均与相切.
(1)若,,(长度单位:米),求种植花卉区域的面积;
(2)若扇形的半径为10米,圆心角为,则多大时,平行四边形绿地占地面积最小?
【培优篇】
一、单选题
1.(2023·全国·模拟预测)如图所示,面积为的扇形OMN中,M,N分别在x,y轴上,点P在弧MN上(点P与点M,N不重合),分别在点P,N作扇形OMN所在圆的切线交于点Q,其中与x轴交于点R,则的最小值为( )
A.4B.C.D.2
二、多选题
2.(23-24高三上·山东威海·期末)质点和同时出发,在以原点为圆心,半径为的上逆时针作匀速圆周运动.的角速度大小为,起点为与轴正半轴的交点;的角速度大小为,起点为射线与的交点.则当与重合时,的坐标可以为( )
A.B.C.D.
三、填空题
3.(2021·上海·模拟预测)已知,对任意,总存在实数,使得,则的最小值是
角α的弧度数公式
|α|=eq \f(l,r)(弧长用l表示)
角度与弧度的换算
1°=eq \f(π,180) rad;1 rad=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(180,π)))°
弧长公式
弧长l=|α|r
扇形面积公式
S=eq \f(1,2)lr=eq \f(1,2)|α|r2
前提
如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)
定义
正弦
y叫做α的正弦函数,记作sin α,即sin α=y
余弦
x叫做α的余弦函数,记作cs α,即cs α=x
正切
eq \f(y,x)叫做α的正切函数,记作tan α,即tan α=eq \f(y,x)(x≠0)
三角函数
正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数
专题12 函数的图象-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用): 这是一份专题12 函数的图象-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题12函数的图象-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题12函数的图象-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
专题01 集合-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用): 这是一份专题01 集合-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题01集合-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题01集合-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题31 复数-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用): 这是一份专题31 复数-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。