|课件下载
搜索
    上传资料 赚现金
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件.pptx
    • 教案
      人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 教案.docx
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案01
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案02
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案03
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案04
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案05
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案06
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案07
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案08
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案01
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案02
    人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案03
    还剩45页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用教学ppt课件

    展开
    这是一份数学选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用教学ppt课件,文件包含人教A版数学高二选择性必修第三册822一元线性回归模型参数的最小二乘估计第2课时课件pptx、人教A版数学高二选择性必修第三册822一元线性回归模型参数的最小二乘估计第2课时教案docx等2份课件配套教学资源,其中PPT共53页, 欢迎下载使用。

    1.进一步掌握一元线性回归模型参数的统计意义,会用相关统计软件.2.了解非线性回归模型.3.会通过分析残差和利用R2判断回归模型的拟合效果.
    例 经验表明,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高,在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据(表8.2-3),试根据这些数据建立树高关于胸径的经验回归方程.
    解:以胸径为横坐标、树高为纵坐标作散点图,得到图8.2-9.在图8.2-9中,散点大致分布在一条从左下角到右上角的直线附近,表明两个变量线性相关,并且是正相关,因此可以用一元线性回归模型刻画树高与胸径之间的关系.
    根据经验回归方程,由表8.2-3中胸径的数据可以计算出树高的预测值(精确到0.1)以及相应的残差,如表8.2-4所示
    以胸径为横坐标,残差为纵坐标,作残差图,得到图8.2-11.观察残差表和残差图,可以看到,残差的绝对值最大是0.8,所有残差分布在以横轴为对称轴、宽度小于2的带状区域内.可见经验回归方程较好地刻画了树高与胸径的关系,我们可以根据经验回归方程由胸径预测树高.
    问题 人们常将男子短跑100 m的高水平运动员称为“百米飞人”.表8.2-5给出了1968年之前男子短跑100 m世界纪录产生的年份和世界纪录的数据,试依据这些成对数据,建立男子短跑100 m世界纪录关于纪录产生年份的经验回归方程.表8.2-5
    以成对数据中的世界纪录产生年份为横坐标,世界纪录为纵坐标作散点图,得到图8.2-12.
    在图8.2-12中,散点看上去大致分布在一条直线附近,似乎可用一元线性回归模型建立经验回归方程.用Y表示男子短跑100 m的世界纪录,t表示纪录产生的年份,利用一元线性回归模型
    来刻画世界纪录和世界纪录产生年份之间的关系.根据最小二乘法,由表中的数据得到经验回归方程为
    将经验回归直线叠加到散点图,得到图8.2-13
    以经验回归直线为参照,可以发现经验回归方程的不足之处,以及散点的更为精细的分布特征,例如,第一个世界纪录所对应的散点远离经验回归直线,并且前后两时间段中的散点都在经验回归直线的上方,中间时间段的散点都在经验回归直线的下方,这说明散点并不是随机分布在经验回归直线的周围,而是围绕着经验回归直线有一定的变化规律,即成对样本数据呈现出明显的非线性相关的特征
    观察:从图8.2-13中可以看到,经验回归方程①较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?
    思考:你能对模型进行修改,以使其更好地反映散点的分布特征吗?
    如果表8.2-6对应的散点图呈现出很强的线性相关特征,我们就可以借助一元线性回归模型和新的成对数据,对参数c1和c2作出估计,进而可以得到Y关于t的非线性经验回归方程.
    在直角坐标系中画出表8.2-6中成对数据的散点图,如图8.2-14所示,散点的分布呈现出很强的线性相关特征.
    再在图8.2-14中画出(*)式所对应的经验回归直线,得到图8.2-15.
    图8.2-15表明,经验回归方程(*)对于表8.2-6中的成对数据具有非常好的拟合精度.将图8.2-15习图8.2-13进行对比,可以发现和之间的线性相关程度比原始样本数据的线性相关程度强得多.
    在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色),表明非线性经验回归方程②对于原始数据的拟合效果远远好于经验回归方程①.
    两个经验回归方程的残差(精确到0.001)如表8.2-7所示.观察各项残差的绝对值,发现经验回归方程②远远小于①,即经验回归方程②的合效果要远远好于①.
    在一般情说下,直接比较两个模型的残差比较困难,因为在某些散点上一个模型的残差的绝对值比另一个模型的小,而另一些散点的情况则相反.可以通过比较残差的平方和来比较两个模型的效果.
    由表8.2-7容易算出经验回归方程①和②的R2分别约为0.7325和0.9983,因此经验回归方程②的刻画效果比经验回归方程①的好很多.
    另外,我们还可以用新的观测数据来检验模型的拟合效果.事实上,我们还有1968年之后的男子短跑100 m世界记录数据,如表8.2-8所示.
    在散点图8.2-12中,绘制表8.2-8中的散点(绿色),再添加经验回归方程①所对应的经验回归直线(红色),以及经验回归方程②所对应的经验回归曲线(蓝色),得到图8.2-17显然绿色散点分布在蓝色经验回归曲线的附近,远离红色经验回归直线,表明经验回归方程②对于新数据的预报效果远远好于①.
    思考:在上述问题情境中,男子短跑100 m世界纪录和纪录创建年份之间呈现出对数关系,能借助于样本相关系数刻画这种关系的强弱吗?
    在使用经验回归方程进行预测时,需要注意下列问题:(1)经验回归方程只适用于所研究的样本的总体.例如,根据我国父亲身高与儿子身高的数据建立的经验回归方程,不能用来描述美国父亲身高与儿子身高之间的关系.同样,根据生长在南方多雨地区的树高与胸径的数据建立的经验回归方程,不能用来描述北方干旱地区的树高与胸径之间的关系.(2)经验回归方程一般都有时效性.例如,根据20世纪80年代的父亲身高与儿子身高的数据建立的经验回归方程,不能用来描述现在的父亲身高与儿子身高之间的关系.(3)解释变量的取值不能离样本数据的范围太远. 一般解释变量的取值在样本数据范围内,经验回归方程的预报效果会比较好,超出这个范围越远,预报的效果越差.(4)不能期望经验回归方程得到的预报值就是响应变量的精确值.事实上,它是响应变量的可能取值的平均值.
    (1)确定研究对象,明确哪个变量是解释变量,哪个变量是响应变量.(2)画出解释变量与响应变量的散点图,观察它们之间的关系 (如是否存在线性关系等).(3)由经验确定回归方程的类型.(4)按一定规则(如最小二乘法)估计经验回归方程中的参数.(5)得出结果后需进行线性回归分析. ①残差平方和越小,模型的拟合效果越好. ②决定系数R2取值越大,说明模型的拟合效果越好.注意:若题中给出了检验回归方程是否理想的条件,则根据题意进行分析检验即可.
    建立线性回归模型的基本步骤
    4.判断模型拟合的效果:残差分析
    R2越大,表示残差平方和越小,即模型的拟合效果越好R2越小,表示残差平方和越大,即模型拟合效果越差.
    1.线性回归模型y=bx+a+e含有随机误差e,其中x为解释变量,y响应变量
    完成教材:第121页习题8.2第4题.
    1.在回归分析中,分析残差能够帮助我们解决哪些问题?
    分析残差可以帮助我们解决以下几个问题:(1)寻找残差明显比其他残差大很多的异常点,如果有,检查相应的样本数据是否有错.(2)分析残差图可以诊断选择的模型是否合适,如果不合适,可以参考残差图提出修改模型的思路.
    2.1997-2006年我国的国内生产总值(GDP)的数据如下:
    (1)作GDP和年份的散点图,根据该图猜想它们之间的关系可以用什么模型描述;
    (1)画GDP与年份的散点图,如图所示,可以观察到随着年份的增加GDP也随之增加,GDP值与年份呈现近似线性关系,可以用一元线性回归模型刻画.
    (2)建立年份为解释变量,GDP为响应变量的一元线性回归模型,并计算残差;
    残差的计算结果见下表.
    (3)根据你得到的一元线性回归模型,预测2017年的GDP,看看你的预测值与实际的GDP的误差是多少;
    2017年的GDP预报值为359684亿元,2017年的实际的GDP为820754亿元,预测值比实际值少461070亿元.
    (4)你认为这个模型能较好地刻画GDP和年份的关系吗?请说明理由
    (4)上面建立的回归方程的R2=0.9213,说明在1997-2006年内,该模型年份能够解释92.13%的GDP值变化,因此所建立的模型较好地刻画了GDP和年份的关系.但因为残差呈现一定的规律性,中间是负数,两边是正数,所以可以考虑用非线性回归模型拟合数据.
    (5)随着时间的发展,又收集到2007—2016年的GDP数据如下:
    建立年份(1997-2016)为解释变量,GDP为响应变量的经验回归方程,并预测2017年的GDP,与实际的GDP误差是多少?你能发现什么?
    利用上述模型,预测2017年的GDP值为704025亿元,而2017年GDP的实际值820754亿元,预测值比实际值少116729亿元.
    通过两个模型预测2017年的GDP值,发现第2个模型预测的更准确,说明建立的模型自变量的取值范围决定了模型的适用范围,通常不能超出太多,否则会出现较大的误差.
    1.如果散点图中所有的散点都落在一条斜率为非0的直线上,请回答下列问题:(1)解释变量和响应变量的关系是什么?(2)R2是多少?
    (1)解释变量和响应变量是线性函数关系.
    2.一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如表所示.
    (1)画出散点图;(2)建立加工时间关于零件数的一元线性回归模型;(3)关于加工零件的个数与加工时间,你能得出什么结论?
    3.根据8.1.2节例2中某城市居民年收入与A商品销售额的数据:(1)建立A商品销售额关于居民年收入的一元线性回归模型;(2)如果这座城市居民的年收入达到40亿元,估计A商品的销售额是多少.
    4.人口问题是关乎国计民生的大问题.下表是1949—2016年我国的人口总数(摘自中国统计年鉴—2017)
    (1)画出散点图;(2)建立总人口数关于年份的一元线性回归模型;(3)直接用上面建立的回归模型预测2020年的我国人口总数,得到的结果合理吗?为什么?
    (1)画人口总数与年份的散点图,如图所示.
    (3)利用经验回归方程得到2020年我国人口总数的预测值为149850万人.得到的这个预测结果不合理.将拟合直线画在散点图上,可以看到,2000年以后,我国人口总数的增长速度逐渐平稳且呈下降趋势,因此运用上述经验回归模型预测2020年我国的人口总数会出现高估.也可以通过观察残差图,看到残差具有中间为正,两边为负的特点.可以考虑用其他统计模型拟合数据.
    5.在某地区的一段时间内观测到的不小于某震级x的地震数N的数据如下表:
    试建立经验回归方程表示二者之间的关系,该模型对预测地震有帮助吗?
    先画地震数与震级的散点图,如图(1)所示.
    x和y的散点图如图(2)所示.从这个散点图中可以看出x和y之间有很强的线性相关性,因此可以用一元线性回归模型拟合它们之间的关系.
    该模型不能直接用于预报地震,因为它不能预报何时发生地震,震级是多少
    6.生活中有许多变量之间的关系是值得我们去研究的.例如,数学成绩、物理成绩和化学成绩两两之间是相关的吗?哪两个学科成绩之间相关性更大,你能解释其中的原因吗?语文成绩对数学成绩有影响吗?等等,请用你们班的某次考试成绩,研究它们之间的关系如果它们之间有关系,请建立统计模型进行分析.
    回归分析法和相关分析法是统计学中的两种重要方法,前者用于由一个变量的变化去推测另一个变量的变化,后者研究随机变量间的相关关系,它们是由英国科学家高尔顿创立的.高尔顿的科研兴趣十分广泛,在地理学、气象学、统计学、心理学、人类学等众多领域都有建树他在遗传学的研究中发现了一个令人困惑的问题,通常,高个子的人会和高个子的人结婚,矮个子的人会和矮个子的人结婚,而人类的遗传是把上一代的优势性状传递给下一代这样,在人群中,高个子、矮个子的比例都应逐渐增多,而中等个子的比例应逐渐下降.但事实并非如此,为什么呢?
    这个问题一直萦绕在他的心头1875年,为了确定豌豆尺寸的遗传规律,他将自己精心挑选的490粒甜豌豆按照尺寸大小分成7组,在7个不同地区各种植70粒(每组10粒).豌豆成熟后,他仔细测量了新豌豆(子代)的尺寸,并与豌豆种子(母代)的尺寸进行比较数据分析发现,母代尺寸大的子代尺寸较大,母代尺寸小的子代尺寸也较小但无论尺寸大小,都有子代向母代的平均值(7种尺寸豌豆的平均值)收缩的趋势.
    这一结论在遗传学上是否具有普遍性呢?能否用它来解释人的个子高矮的遗传现象呢?为此,在1885年,高尔顿随机选取了205对夫妇及其928个成年子女的身高数据进行研究由于男女身高存在差异,他采用女子身高乘1.08的方法将女子身高换算成男子身高.他将父母的平均身高称为“中亲身高”,用
    进行计算,其中a为母亲身高,b为父亲身高.记中亲身高为X(母代变量),子女身高为Y(子代变量),分析X和Y的数据,他惊奇地发现,X和Y的平均值均为173.4cm.在此基础上,他还发现当中亲身高大于平均值时,他们的子女相对较高,但与父母相比还是矮一些,例如,当中亲身高为181.6cm时,他们子女的平均身高仅为177.5cm;当中亲身高小于平均值时,他们的子女相对较矮,但比父母又要高一些,例如,当中亲身高为166.4cm时,他们子女的平均身高为169.4cm.这表明,子女身高有向平均值“回归”的倾向.1886年,高尔顿将这一研究成果写成了论文《遗传身高向平均身高的回归》,文中正式引入了“回归”这个概念,1888年,高尔顿发表了统计史上第一篇有关相关系数值的论文,文中用到了一种用图形估计相关系数值的方法.
    高尔顿提出的回归和相关思想是开创性的,但他的工作做得还不够彻底.后来,埃奇沃思(F.Y.Edgewrth,1845—126)和皮尔逊(K.Pearsn,1857—1936)等一批学者加入到研究中来,使回归和相关理论得到了完善与发展.埃奇沃思不仅给出了常见的样本相关系数的公式,还赋予“回归”以纯数学的意义,为这一方法的广泛应用奠定了基础.皮尔逊则系统整理和完善了当时的已有成果,用极大似然法对相关系数的估计问题做了改进,并把相关回归方法运用到生物测量数据,推动了这一方法在生物领域的应用.
    回归与相关的发现,为统计方法增添了重要的工具,推动了统计学的应用和发展,标志着统计学描述时代的结束和推断时代的开始,随着时代的发展,“回归”一词的内涵得到了极大扩展,它可以泛指在任何情况下自变量与因变量之间的统计关系;回归分析、相关分析也在科学研究的各个方面得到广泛应用,成为探索变量之间关系的重要方法.请你进一步查阅资料,了解回归与相关的发展和应用.
    相关课件

    人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用课文内容ppt课件: 这是一份人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000364_t3/?tag_id=26" target="_blank">8.2 一元线性回归模型及其应用课文内容ppt课件</a>,文件包含人教A版数学高二选择性必修第三册822一元线性回归模型参数的最小二乘估计第1课时课件pptx、人教A版数学高二选择性必修第三册822一元线性回归模型参数的最小二乘估计第1课时教案docx等2份课件配套教学资源,其中PPT共32页, 欢迎下载使用。

    人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用完美版ppt课件: 这是一份人教A版 (2019)选择性必修 第三册第八章 成对数据的统计分析8.2 一元线性回归模型及其应用完美版ppt课件,共32页。PPT课件主要包含了复习导入,新知探索,课堂总结等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件: 这是一份人教A版 (2019)选择性必修 第三册8.2 一元线性回归模型及其应用教学ppt课件,共24页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教A版数学高二选择性必修第三册 8.2.2 一元线性回归模型参数的最小二乘估计(第2课时) 课件+教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map