高考数学一轮复习小题多维练(新高考专用)第43练条件概率与全概率公式(原卷版+解析)
展开1.(2023·云南师大附中模拟(理))某射击队员练习打靶,已知他连续两次射中靶心的概率是0.4,单独一次射中靶心的概率是0.8.在某场比赛中,该队员第一次已经中靶,则第二次也中靶的概率是( )
A.0.4B.0.5C.0.6D.0.8
2.(2023·天津·南开中学模拟)已知,则( ).
A.B.C.D.
3.(2023·湖北·宜昌市夷陵中学模拟)某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于( )
A.B.C.D.
4.(2023·福建·莆田华侨中学模拟)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( )
A.B.C.D.
5.(2023·湖南·长沙市明德中学二模)学校从高一名男数学老师和名女数学老师中选派人,担任本次模拟考试数学阅卷任务,则在选派的人中至少有名男老师的条件下,有名女老师的概率为( )
A.B.C.D.
6.(2023·江苏无锡·模拟)已知随机事件M,N,,则的值为________.
7.(2023·湖南·长郡中学模拟)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.记事件A为“抽取到的两张卡片上的数奇偶性相同”,事件B为“两张卡片上的数字均为偶数”,则________.
8.(2023·重庆市涪陵高级中学校模拟)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为_____
9.(2023·山东临沂·三模)某足球队在对球员的使用上进行数据分析,根据以往的数据统计,甲球员能够胜任前锋、中锋、后卫三个位置,且出场率分别为0.3,0.5,0.2,当甲球员在相应位置时,球队输球的概率依次为0.4,0.2,0.6.据此判断当甲球员参加比赛时,该球队某场比赛不输球的概率为_______;
10.(2023·河北邯郸·模拟)同时抛掷两枚质地均匀的骰子两次,记事件“两枚骰子朝上的点数之积均为偶数”,事件“两枚骰子朝上的点数之和均为奇数”,则___________;
1.(2023·重庆·三模)抛掷2枚质地均匀的骰子(正方体,6个表面分别标有数字1、2、3、4、5、6).在掷出的两枚骰子点数之和为6点的条件下,点数均为奇数的概率为( )
A.B.C.D.
2.(2023·贵州毕节·三模(理))已知60个产品中,有35个产品长度合格,45个产品质量合格,20个产品长度和质量都合格,现任取一个产品,若它的质量合格,则它的长度也合格的概率为( )
A.B.C.D.
3.(2023·山东泰安·二模)已知盒子中装有形状,大小完全相同的五张卡片,分别标有数字1,2,3,4,5,现每次从中任意取一张,取出后不再放回,若抽取三次,则在前两张卡片所标数字之和为偶数的条件下,第三张为奇数的概率为( )
A.B.C.D.
4.(2023·北京东城·三模)若某地区60岁及以上人群的新冠疫苗全程(两针)接种率为60%,加强免疫接种(第三针)的接种率为36%,则在该地区完成新冠疫苗全程接种的60岁及以上人群中随机抽取一人,此人完成了加强免疫接种的概率为( )
A.0.6B.0.375C.0.36D.0.216
5.(2023·山东日照·三模)若将整个样本空间想象成一个边长为1的正方形,任何事件都对应样本空间的一个子集,且事件发生的概率对应子集的面积.则如图所示的阴影部分的面积表示( )
A.事件A发生的概率B.事件B发生的概率
C.事件B不发生条件下事件A发生的概率D.事件A、B同时发生的概率
6.(2023·天津·南开中学模拟)从标有的张卡片中依次抽出两张,则在第一次抽到数字为的倍数的条件下,第二次抽到的数字大于第一次的概率为_____.
7.(2023·山西临汾·一模(理))有两台车床加工同一型号的零件,第1台车床加工的次品率为5%,第2台车床加工的次品率为6%,加工出来的零件混放在一起.已知两台车床加工的零件数分别占总数的45%,55%,则任取一个零件是次品的概率为___.
8.(2023·辽宁沈阳·一模)某次社会实践活动中,甲、乙两个班的同学共同在一社区进行民意调查.参加活动的甲、乙两班的人数之比为5:3,其中甲班中女生占,乙班中女生占.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率是______.
9.(2023·辽宁·沈阳二中模拟)年北京冬奥会吉祥物“冰墩墩”凭借憨态可掬的熊猫形象备受追捧,引来国内外粉丝争相购买,竟出现了“一墩难求”的局面.已知某工厂生产一批冰墩墩,产品合格率为.现引进一种设备对产品质量进行检测,但该设备存在缺陷,在产品为次品的前提下用该设备进行检测,检测结果有的可能为不合格,但在该产品为正品的前提下,检测结果也有的可能为不合格.现从生产的冰墩墩中任取一件用该设备进行检测,则检测结果为合格的概率是______________.
10.(2023·湖南·模拟)某武装部在预备役民兵的集训中,开设了移动射击科目,移动射击科目规则如下:每人每次移动射击训练只有3发子弹,每次连续向快速移动的目标射击,每射击一次消耗一发子弹,若目标被击中,则停止射击,若目标未被击中,则继续射击,3发子弹都没打中,移动目标消失.通过统计分析该武装部的预备役民兵李好以往的训练成绩发现,李好第一枪命中目标的概率为0.8,若第一枪没有命中,第二枪命中目标的概率为0.4,若第二枪也没有命中,第三枪命中目标的概率为0.2.则目标被击中的条件下,李好第二枪命中目标的概率是__________.
1.(2023·重庆八中模拟)若随机事件A,B满足,则( )
A.B.C.D.
2.(2023·江苏泰州·模拟)足球训练中点球射门是队员练习的必修课,经统计,某足球队员踢向球门左侧时进球的概率为80%,踢向球门右侧时进球的概率为75%.若该球员进行点球射门时踢向球门左、右两侧的概率分别为60%、40%,则该球员点球射门进球的概率为( )
A.77%B.77.5%C.78%D.78.5%
3.(2023·湖北·武汉二中模拟)已知,分别为随机事件A,B的对立事件,,,则下列说法正确的是( )
A.
B.若,则 A,B对立
C.若A,B独立,则
D.若A,B互斥,则
4.(2023·山东师范大学附中模拟)(多选题)感动中国十大人物之一的张桂梅老师为了让孩子走出大山,扎根基层教育默默奉献精神感动了全中国.受张桂梅老师的影响,有位志愿者主动到所山区学校参加支教活动,要求每所学校至少安排一位志愿者,每位志愿者只到一所学校支教,下列结论正确的有( )
A.不同的安排方法数为
B.若甲学校至少安排两人,则有种安排方法
C.小晗被安排到甲学校的概率为
D.在小晗被安排到甲校的前提下,甲学校安排两人的概率为
5.(2023·江苏南京·模拟)(多选题)甲罐中有2个红球、2个黑球,乙罐中有3个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以B表示事件“由乙罐取出的球是红球”,则( )
A.B.C.D.
6.(2023·山东威海·三模)设随机事件A、B,已知,,,则______,______.
7.(2023·重庆实验外国语学校一模)李华应聘一家上市公司,规则是从备选的10道题中抽取4道题测试,答对3道题及以上就可以进入面试.李华可以答对这10道题目中的6道题.若李华第一道题就答对了,则李华进入面试的概率为_________.
8.(2023·辽宁·模拟)已知一个袋子里有9个大小、形状、质地完全相同的球,其中4个红球、2个白球、3个黑球,先从袋子中任取1个球,再从剩下的8个球中任取2个球,则这2个球都是红球的概率为______,先取出的球也是红球的概率为______.
9.(2023·天津五十七中模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”、“冰墩墩”、“雪容融”等.小王有3张“冬梦”,2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”、“冰墩墩”、"雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以表示小王取出的是“冬梦”、“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则____________,___________.
专题14 计数原理、随机变量及其分布
第43练 条件概率与全概率公式
1.(2023·云南师大附中模拟(理))某射击队员练习打靶,已知他连续两次射中靶心的概率是0.4,单独一次射中靶心的概率是0.8.在某场比赛中,该队员第一次已经中靶,则第二次也中靶的概率是( )
A.0.4B.0.5C.0.6D.0.8
答案:B
【解析】记该队员第二次射中靶心为事件,第一次射中靶心为事件,题目所求为在事件发生的条件下,事件发生的概率,即.
故选:B.
2.(2023·天津·南开中学模拟)已知,则( ).
A.B.C.D.
答案:C
【解析】因为,
所以,
故选:C
3.(2023·湖北·宜昌市夷陵中学模拟)某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于( )
A.B.C.D.
答案:C
【解析】解:设甲同学报的项目其他同学不报, 4位同学所报项目各不相同,
由题得,,
所以.
故选:C
4.(2023·福建·莆田华侨中学模拟)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( )
A.B.C.D.
答案:C
【解析】解:因为甲罐中有3个红球、2个黑球,所以,故选项A正确;
因为,所以,故选项B正确;
因为,故选项C错误;
因为,所以,故选项D正确.
故选:C.
5.(2023·湖南·长沙市明德中学二模)学校从高一名男数学老师和名女数学老师中选派人,担任本次模拟考试数学阅卷任务,则在选派的人中至少有名男老师的条件下,有名女老师的概率为( )
A.B.C.D.
答案:B
【解析】记“选派人中至少有名男老师”为事件,“选派人中有名女老师”为事件,
则,,
显然,所以.
故选:B.
6.(2023·江苏无锡·模拟)已知随机事件M,N,,则的值为________.
答案:
【解析】依题意得,所以
故.
故答案为:.
7.(2023·湖南·长郡中学模拟)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.记事件A为“抽取到的两张卡片上的数奇偶性相同”,事件B为“两张卡片上的数字均为偶数”,则________.
答案:
【解析】,
故答案为:
8.(2023·重庆市涪陵高级中学校模拟)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为_____
答案:
【解析】解:第一次取到白球为事件A,第二次取到白球为事件B,则,
.
故答案为:.
9.(2023·山东临沂·三模)某足球队在对球员的使用上进行数据分析,根据以往的数据统计,甲球员能够胜任前锋、中锋、后卫三个位置,且出场率分别为0.3,0.5,0.2,当甲球员在相应位置时,球队输球的概率依次为0.4,0.2,0.6.据此判断当甲球员参加比赛时,该球队某场比赛不输球的概率为_______;
答案:0.66
【解析】记甲球员出场前锋、中锋、后卫分别为事件;记甲球员出场前锋、中锋、后卫时输球分别为事件,
则当甲球员参加比赛时,该球队某场比赛不输球的概率:
故答案为:0.66
10.(2023·河北邯郸·模拟)同时抛掷两枚质地均匀的骰子两次,记事件“两枚骰子朝上的点数之积均为偶数”,事件“两枚骰子朝上的点数之和均为奇数”,则___________;
答案:
【解析】两枚质地均匀的骰子抛掷一次,样本空间所含全部的样本点个数为36,事件“两枚骰子朝上的点数之积为偶数”包含样本点27个,其中事件“两枚骰子朝上的点数之和为奇数”包含样本点18个,从而,,
故,
故答案为:
1.(2023·重庆·三模)抛掷2枚质地均匀的骰子(正方体,6个表面分别标有数字1、2、3、4、5、6).在掷出的两枚骰子点数之和为6点的条件下,点数均为奇数的概率为( )
A.B.C.D.
答案:A
【解析】设掷出的两枚骰子点数之和为6点为事件A,点数均为奇数为事件B,
则,,
则.
故选:A
2.(2023·贵州毕节·三模(理))已知60个产品中,有35个产品长度合格,45个产品质量合格,20个产品长度和质量都合格,现任取一个产品,若它的质量合格,则它的长度也合格的概率为( )
A.B.C.D.
答案:C
【解析】解:设事件A表示“产品长度合格”,事件B表示“产品质量合格”,
则事件AB表示“产品质量、长度都合格”,
则,
所以,
故选:C
3.(2023·山东泰安·二模)已知盒子中装有形状,大小完全相同的五张卡片,分别标有数字1,2,3,4,5,现每次从中任意取一张,取出后不再放回,若抽取三次,则在前两张卡片所标数字之和为偶数的条件下,第三张为奇数的概率为( )
A.B.C.D.
答案:C
【解析】设前两张卡片所标数字之和为偶数为事件,第三张为奇数为事件,则事件包括前两张都为奇数或者都为偶数,故,,故前两张卡片所标数字之和为偶数的条件下,第三张为奇数的概率.
故选:C.
4.(2023·北京东城·三模)若某地区60岁及以上人群的新冠疫苗全程(两针)接种率为60%,加强免疫接种(第三针)的接种率为36%,则在该地区完成新冠疫苗全程接种的60岁及以上人群中随机抽取一人,此人完成了加强免疫接种的概率为( )
A.0.6B.0.375C.0.36D.0.216
答案:A
【解析】解:设事件为抽取的一人完成新冠疫苗全程接种,事件为抽取的一人完成加强免疫接种,
所以,,
所以在该地区完成新冠疫苗全程接种的60岁及以上人群中随机抽取一人,此人完成了加强免疫接种的概率为.
故选:A
5.(2023·山东日照·三模)若将整个样本空间想象成一个边长为1的正方形,任何事件都对应样本空间的一个子集,且事件发生的概率对应子集的面积.则如图所示的阴影部分的面积表示( )
A.事件A发生的概率B.事件B发生的概率
C.事件B不发生条件下事件A发生的概率D.事件A、B同时发生的概率
答案:A
【解析】由题意可知:
,
故选:A
6.(2023·天津·南开中学模拟)从标有的张卡片中依次抽出两张,则在第一次抽到数字为的倍数的条件下,第二次抽到的数字大于第一次的概率为_____.
答案:
【解析】记事件:第一次抽到的数字为的倍数;事件:第二次抽到的数字大于第一次;
则,,.
故答案为:.
7.(2023·山西临汾·一模(理))有两台车床加工同一型号的零件,第1台车床加工的次品率为5%,第2台车床加工的次品率为6%,加工出来的零件混放在一起.已知两台车床加工的零件数分别占总数的45%,55%,则任取一个零件是次品的概率为___.
答案:5.55%
【解析】依题意,任取一个零件,求它是次品的概率为
.
故答案为:5.55%.
8.(2023·辽宁沈阳·一模)某次社会实践活动中,甲、乙两个班的同学共同在一社区进行民意调查.参加活动的甲、乙两班的人数之比为5:3,其中甲班中女生占,乙班中女生占.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率是______.
答案:
【解析】如果用A1,A2分别表示居民所遇到的一位同学是甲班的与乙班的事件,
B表示是女生的事件,则Ω=A1∪A2,且A1,A2互斥,B⊆Ω,
由题意可知,P(A1)=,P(A2)=,
且P(B|A1)=,P(B|A2)=.
由全概率公式可知P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=×+×=,
即该社区居民遇到一位进行民意调查的同学恰好是女生的概率为.
故答案为:
9.(2023·辽宁·沈阳二中模拟)年北京冬奥会吉祥物“冰墩墩”凭借憨态可掬的熊猫形象备受追捧,引来国内外粉丝争相购买,竟出现了“一墩难求”的局面.已知某工厂生产一批冰墩墩,产品合格率为.现引进一种设备对产品质量进行检测,但该设备存在缺陷,在产品为次品的前提下用该设备进行检测,检测结果有的可能为不合格,但在该产品为正品的前提下,检测结果也有的可能为不合格.现从生产的冰墩墩中任取一件用该设备进行检测,则检测结果为合格的概率是______________.
答案:
【解析】记事件检测结果为合格,记事件产品为正品,
则,,,
由全概率公式可得,
所以,检测结果为合格的概率为.
故答案为:.
10.(2023·湖南·模拟)某武装部在预备役民兵的集训中,开设了移动射击科目,移动射击科目规则如下:每人每次移动射击训练只有3发子弹,每次连续向快速移动的目标射击,每射击一次消耗一发子弹,若目标被击中,则停止射击,若目标未被击中,则继续射击,3发子弹都没打中,移动目标消失.通过统计分析该武装部的预备役民兵李好以往的训练成绩发现,李好第一枪命中目标的概率为0.8,若第一枪没有命中,第二枪命中目标的概率为0.4,若第二枪也没有命中,第三枪命中目标的概率为0.2.则目标被击中的条件下,李好第二枪命中目标的概率是__________.
答案:
【解析】记事件:“李好第一枪击中目标”,事件:“李好第二枪击中目标”,事件:“李好第三枪击中目标”,事件:“目标被击中”,则,,.
故答案为:
1.(2023·重庆八中模拟)若随机事件A,B满足,则( )
A.B.C.D.
答案:B
【解析】解:由题意知:,得,
故.
故选:B.
2.(2023·江苏泰州·模拟)足球训练中点球射门是队员练习的必修课,经统计,某足球队员踢向球门左侧时进球的概率为80%,踢向球门右侧时进球的概率为75%.若该球员进行点球射门时踢向球门左、右两侧的概率分别为60%、40%,则该球员点球射门进球的概率为( )
A.77%B.77.5%C.78%D.78.5%
答案:C
【解析】由题意得:该球员进行点球射门时踢向球门左册时进球的概率为
踢向右侧进球的概为,
故该球员点球射门进球的概率为,
故选:C.
3.(2023·湖北·武汉二中模拟)已知,分别为随机事件A,B的对立事件,,,则下列说法正确的是( )
A.
B.若,则 A,B对立
C.若A,B独立,则
D.若A,B互斥,则
答案:C
【解析】对A,,故A错误;
对B,若A,B对立,则,反之不成立,故B错误;
对C,根据独立事件定义,故C正确;
对D,若A,B互斥,则,故D错误;
故选:C
4.(2023·山东师范大学附中模拟)(多选题)感动中国十大人物之一的张桂梅老师为了让孩子走出大山,扎根基层教育默默奉献精神感动了全中国.受张桂梅老师的影响,有位志愿者主动到所山区学校参加支教活动,要求每所学校至少安排一位志愿者,每位志愿者只到一所学校支教,下列结论正确的有( )
A.不同的安排方法数为
B.若甲学校至少安排两人,则有种安排方法
C.小晗被安排到甲学校的概率为
D.在小晗被安排到甲校的前提下,甲学校安排两人的概率为
答案:AC
【解析】对于A选项,将位志愿者分成组,每组至少一人,每组人数分别为、、或、、,
再将这三组志愿者分配给个地区,不同的安排方法种数为种,A对;
对于B选项,若甲学校至少安排两人,则甲校安排人或人,
则不同的安排方法种数为种,B错;
对于C选项,若小晗被安排到甲学校,则甲校可安排的人数为或或,
由古典概型的概率公式可知,小晗被安排到甲学校的概率为,C对;
对于D选项,记事件小晗被安排到甲校,事件甲学校安排两人,
则,,
由条件概率公式可得,D错.
故选:AC.
5.(2023·江苏南京·模拟)(多选题)甲罐中有2个红球、2个黑球,乙罐中有3个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以表示事件“由甲罐取出的球是红球”,再从乙罐中随机取出一球,以B表示事件“由乙罐取出的球是红球”,则( )
A.B.C.D.
答案:ACD
【解析】因为甲罐中有2个红球、2个黑球,所以,故选项A正确;
因为,所以选项C正确;
因为,,所以,故选项D正确;
因为,所以选项B错误;
故选:ACD
6.(2023·山东威海·三模)设随机事件A、B,已知,,,则______,______.
答案: 0.12 0.24
【解析】,
,
.
故答案为:0.12;0.24.
7.(2023·重庆实验外国语学校一模)李华应聘一家上市公司,规则是从备选的10道题中抽取4道题测试,答对3道题及以上就可以进入面试.李华可以答对这10道题目中的6道题.若李华第一道题就答对了,则李华进入面试的概率为_________.
答案:.
【解析】设事件为“李华进入面试”,事件为“李华答对第一道题”,则,,所以.
故答案为:.
8.(2023·辽宁·模拟)已知一个袋子里有9个大小、形状、质地完全相同的球,其中4个红球、2个白球、3个黑球,先从袋子中任取1个球,再从剩下的8个球中任取2个球,则这2个球都是红球的概率为______,先取出的球也是红球的概率为______.
答案:
【解析】设事件A表示从剩下的8个球中任取2个球都是红球,事件,,分别表示先取的1个球是红球、白球、黑球,
由全概率公式得,
.
故答案为:;.
9.(2023·天津五十七中模拟)第24届冬奥会于2022年2月4日至20日在北京和张家口举行,中国邮政陆续发行了多款纪念邮票,其图案包括“冬梦”、“冰墩墩”、“雪容融”等.小王有3张“冬梦”,2张“冰墩墩”和2张“雪容融”邮票;小李有“冬梦”、“冰墩墩”、"雪容融”邮票各1张.小王现随机取出一张邮票送给小李,分别以表示小王取出的是“冬梦”、“冰墩墩”和“雪容融”的事件;小李再随机取出一张邮票,以B表示他取出的邮票是“冰墩墩”的事件,则____________,___________.
答案:
【解析】表示在小王送给小李一张“冰墩墩”邮票的情况下小李取到一张“冰墩墩”的概率,则;
由题可知,,,,
则
.
故答案为:;.
高考数学一轮复习小题多维练(新高考专用)第27练概率-(原卷版+解析): 这是一份高考数学一轮复习小题多维练(新高考专用)第27练概率-(原卷版+解析),共17页。
高考数学一轮复习小题多维练(新高考专用)第11练诱导公式(原卷版+解析): 这是一份高考数学一轮复习小题多维练(新高考专用)第11练诱导公式(原卷版+解析),共13页。试卷主要包含了(2023·贵州·贵阳一中模拟,(2023·江西萍乡·三模等内容,欢迎下载使用。
高考数学一轮复习小题多维练(新高考专用)专题08统计与概率(原卷版+解析): 这是一份高考数学一轮复习小题多维练(新高考专用)专题08统计与概率(原卷版+解析),共15页。