中职数学北师大版(2021)拓展模块一 上册5.3.2 抛物线的性质课文课件ppt
展开在标准方程 中,因为 ,所以抛物线上的点横坐标,都满足x≥0.于是,抛物线在y轴的右侧(如图),并且当x的值增大时,|y|也增大.这说明抛物线向右上方和右下方无限延伸.
在标准方程中,将y换成-y,方程依然成立.这说明抛物线关于x轴对称.我们把抛物线的对称轴叫做抛物线的轴.
抛物线与它的轴的交点叫做抛物线的顶点.在抛物线的标准方程中,令y = 0,得x = 0.因此,抛物线的顶点为坐标原点.
抛物线上的点M与焦点的距离与点M到准线的距离的比叫做抛物线的离心率.记作e.
由抛物线的定义知e = 1.
【例1】 抛物线y2=8x的焦点坐标为________.
∴焦点坐标 为(2,0).
又∵焦点在x轴的正半轴上
【例2】已知抛物线的标准方程为x2=-8y.求抛物线的焦点F的坐标、准线方程、焦点到准线的距离;
解:p=4,且焦点在y轴的负半轴上.故抛物线的焦点F的坐标为(0,-2),准线方程为y=2,焦点到准线的距离是4.
【例3】 以坐标原点为顶点,x轴为对称轴,且经过点p(-2,-4)的抛物线的标准方程为( ) A.y2=-8x B.x2=-y C.y2=-8x或x2=-y D.y2=-x或x2=-8y
设抛物线方程为y2=-2px
(-4)2=-2p×(-2)
设抛物线方程为y2=2px①或x2=2py②.
①抛物线方程为y2=4x
【例4】已知抛物线的顶点为坐标原点,对称轴为坐标轴,点M(1,2)是抛物线上一点,求抛物线的标准方程.
设抛物线方程为y2=2px
抛物线方程为y2=4x
设抛物线方程为y2=-2px①或x2=2py②.
①抛物线方程为y2=-12x
2. 已知抛物线的顶点为坐标原点,对称轴为坐标轴,并且经过点M (-3,6),求抛物线的标准方程.
中职数学北师大版(2021)拓展模块一 上册第五单元 圆锥曲线5.3 抛物线5.3.2 抛物线的性质优秀课件ppt: 这是一份中职数学北师大版(2021)拓展模块一 上册<a href="/sx/tb_c4036935_t3/?tag_id=26" target="_blank">第五单元 圆锥曲线5.3 抛物线5.3.2 抛物线的性质优秀课件ppt</a>,文件包含北师大版《中职数学拓展模块一上册》第46课抛物线的性质课件pptx、北师大版《中职数学拓展模块一上册》第46课抛物线的性质教学设计docx等2份课件配套教学资源,其中PPT共12页, 欢迎下载使用。
高中数学语文版(中职)拓展模块第二单元 椭圆、双曲线、抛物线2.3 抛物线的标准方程和性质教案配套ppt课件: 这是一份高中数学语文版(中职)拓展模块第二单元 椭圆、双曲线、抛物线2.3 抛物线的标准方程和性质教案配套ppt课件,共13页。PPT课件主要包含了学习目标,回顾旧知,抛物线的标准方程,标准方程的推导,思考交流,例题讲解,抛物线的定义等内容,欢迎下载使用。
数学拓展模块2.3 抛物线示范课课件ppt: 这是一份数学拓展模块2.3 抛物线示范课课件ppt,文件包含人教版中职数学拓展模块231《抛物线》ppt课件ppt、人教版中职数学拓展模块23《抛物线》ppt课件ppt、人教版中职数学拓展模块23《抛物线》教学设计doc等3份课件配套教学资源,其中PPT共35页, 欢迎下载使用。