2024年河南省商丘市夏邑县县城多校九年级第三次模拟考试数学试题
展开这是一份2024年河南省商丘市夏邑县县城多校九年级第三次模拟考试数学试题,共7页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的
1.下列各数中,最小的数是( )
A.|-4∣B.-πC.-13D.-3
2.一个几何体的三视图如图所示,则它表示的几何体可能是( )
3.下列计算正确的是
A.2a2b-3a2b=-a2bB.a3·a4=a12
C.(-2a2b)3=-6a6b3D.(a+b)2=a2+b2
4.“约会哈尔滨冰雪暖世界”哈尔滨冰雪季系列主题活动开展的如火如荼。“冰雪大世界”由10万吨冰打造而成,占地面积81.67万平方米,建设规模创历史之最,其中10万用科学记数法表示为( )
A.10×105B.1×104C.0.1×105D.1×104
5.如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC=60°,BD=43,则OE=( )
A.4B.23C.2D.3
6.对于任意4个实数a,b,c,d定义一种新的运算..
例如:,则关于x的方程的根的情况为( )
A.只有一个实数根B.有两个相等的实数根
C.有两个不相等的实数根D.没有实数根
7.某校在读书系列活动中,为了解学生的课外阅读情况,随机选取了某班甲、乙两组学活生一周的课外阅读时间(单位:小时)进行统计,数据如图表,两组数据的众数分别为M甲、M乙,方差分别为则S甲2、S乙2,则( )试卷源自 每日更新,会员下载免费且不限量。
A.M甲>M乙S甲2
A.70°B.65°C.60°D.55°
9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+6和反比例函数y=cx在同一直角坐标系中的图象可能是( )
10.如图1,正方形ABCD的边长为4,E为CD边的中点,动点P从点A出发沿AB→BC匀速运动,运动到点C时停止,设点P的运动路程为x,线段PE的长为y,y与a的函数图象如图2所示,则点M的坐标为( )
图1 图2
A.(4,23)B.(4,4)C.(4,25)D.(4,5)
二、填空题(每小题3分,共15分)
11.不等式组3x+2-x>41+2x3>x-1的解集是__________。
12.某蓄电池的电压为48V,使用此蓄电池时,电流I(单位:A)与电阻R(单位:Q)的函数表达式为I=48R,当R=12Ω时,I的值为__________A.
13.在践行“安全在我心中,你我一起行动”主题手抄报评比活动中,共设置“交通安全、消防安全、饮食安全、防疫安全”四个主题内容,推荐两名学生参加评比,若他们每人从以上四个主题内容中随机选取一个,则两人恰好选中同一主题的概率是__________.
14.如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37。方向的B处,这时,B处与观测塔P相距__________km.(结果保留整数,参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75,sin50°≈0.77,cs50°≈0.64,tan50°≈1.19)
15.如图,在正方形ABCD中,AB=4,点E为AB边的中点,点P是边BC上一动点,连接PE,沿PE折叠APBE得到APFE.当射线EF经过正方形ABCD的边的中点(不包括点E)时,BP的长为__________.
三、解答题(8小题,共75分)
16.(10分)计算:
(1)(2)化简:
17.(9分)今年全市体育中考,我县体育测试抽到了跳绳这一项目、为了进一步了解某校九年级学生的身体素质情况,体育老师对九年级(1)班50名学生进行一分钟跳绳测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如图、表所示:
请结合图、表完成下列问题:
(1)表中的___________;
(2)请把频数分布直方图补充完整;
(3)这组样本数据的中位数落在第组;
(4)若初三学生一分钟跳绳次数(x)达标要求是:x<120不合格;120
18.(9分)如图,AB是⊙O的直径,点C在⊙O上,且AC=63,BC=6.
(1)尺规作图:过点O作AC的垂线,交劣弧AC于点D,连接CD(保留作图痕迹,不写作法):
(2)在(1)所作的图形中,求扇形DOC的面积.
19.(9分)如图,一次函数y1=k1x+b与反比例函数y2=k2x(x>0)的图像交于A(2,8)
B(a,2)两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,连接PO.
(1)求反比例函数及一次函数的表达式;
(2)△POC的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
20.(9分)发现任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数验证:(1)(-1)2-(-3)2的结果是4的几倍?
(2)设三个连续的整数中间的一个为n,计算最大数与最小数这两个数的平方差,并说明它是4的倍数;延伸:说明任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数.
21.(9分)某服装店经销A,B两种T恤衫,进价和售价如下表所示:
(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?
(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变,服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m件,两种T恤衫全部售完可获利W元.
①请求出W与m的函数关系式;
②服装店第二次获利能否超过第一次获利?请说明理由。
22.(10分)杭州亚运会羽毛球比赛项目中,中国队收获4金3银2铜共9枚奖牌,在一次羽毛球赛中,甲运动员在离地面1米的A点处发球,羽毛球的飞行路线为抛物线的一部分,当球运动到最高点时,离甲运动员站立地点。的水平距离为4米,其高度为215米,在离点0水平距离5米处,放置一个高1.55米的球网BC,以点0为原点建立如图所示的坐标系,回答下列问题.
(1)求抛物线的解析式(不要求写自变量的取值范围)
(2)试通过计算判断此球能否过网:
(3)乙运动员在球场上D(d,0)处接球(不能触网),乙原地起跳后使得球拍达到的最大高度为125米,若乙因接球高度不够而失球,求d的取值范围.
23.(10分)已知点E是正方形ABCD内部一点,且∠BEC=90°.
【初步探究】
(1)如图1,延长CE交AD于点P.求证:△BEC~△CDP;
【深入探究】
(2)如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求CEBE的值:
【延伸探究】
(3)连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出CEBE的值.
数学参考答案
1.B2.D3.A4.D5.C6.C7.D8.A9.B10.C
11.12.4113.14.128
15.2或16.(1);(2)
17.(1)12(2)略(3)3(4)加强锻炼,增强体质(答案不唯一,合情合理即可)
18.解:如图,作AC的垂直平分线,交劣弧AC于点D,连接CD;
(2)如图,连接 OC,
是的直径,,
在中,且,,
,,又,
,是等边三角形,,
,,,
,
19.(1),;
(2)存在,的最大值为.
20.解:发现:
即的结果是4的倍;
(2)设三个连续的整数中间的一个为,则最大的数为,最小的数为,
,
又是整数,
任意三个连续的整数中,最大数与最小数这两个数的平方差是4的倍数;
延伸:设中间一个数为,则最大的奇数为,最小的奇数为,
,
又是整数
任意三个连续的奇数中,最大的数与最小的数这两个数的平方差是8的倍数,
21.(1)2880元
(2)①根据条件,可列,整理即可:
(2)由①可知,,一次函数随的增大而减小,当时,取最大值计算出来和第一次获利比较即可.
22.(1)
(2)能过网
(3)
23.(1)可得出,,从而得出结论;
(2)作于,可证得,从而,不妨设,则,,进而得出EG,FG,可证得,
从而得出;
(3)设,分别延长CE,BE,分别交AD于,交CD于分两种情况当时与当时,进行讨论求解即可.甲组
6
7
8
8
8
9
10
乙组
4
7
8
8
8
9
12
品名
A
B
进价(元/件)
45
60
售价(元/件)
66
90
相关试卷
这是一份2024年河南省商丘市夏邑县多校联考中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省商丘市夏邑县中考二模数学试题,共9页。试卷主要包含了3×10⁻⁶ C,关于x的一元二次方程等内容,欢迎下载使用。
这是一份数学:河南省商丘市夏邑县多校2024年九年级第二次模拟考试试题(解析版),共18页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。