|学案下载
终身会员
搜索
    上传资料 赚现金
    高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案)
    立即下载
    加入资料篮
    高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案)01
    高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案)02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案)

    展开
    这是一份高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案),共4页。学案主要包含了结论总结,结论应用等内容,欢迎下载使用。

    培优增分 拓展提升课三 对称性与周期性的二级结论
    【结论总结】
    一、函数的对称性相关结论
    1.同一个函数的自身对称
    结论❶:若函数y=f(x)满足f(a+x)=f(b-x)或f(x)=f(a+b-x),则函数y=f(x)的图象关于直线x=a+b2对称.
    [说明]轴对称问题:
    若函数f(x)关于x=a对称,可得到如下结论中任意一个:f(a+x)=f(a-x)f(x)=f(2a-x)f(-x)=f(2a+x)
    结论❷:若函数y=f(x)满足f(x)=2b-f(2a-x),则函数y=f(x)的图象关于点A(a,b)对称.反之亦成立.
    特别地,当a=b=0时,变为:若函数y=f(x)满足f(x)=-f(-x),则函数y=f(x)的图象关于点(0,0)对称,即为奇函数的性质.
    [说明]点对称问题:
    若函数f(x)关于(a,0)对称,可得到如下结论中任意一个:f(a+x)=-f(a-x)f(x)=-f(2a-x)f(-x)=-f(2a+x)
    2.同一“f”下,两个不同函数的对称
    结论❸:函数y=f(a+x)与y=f(b-x)的图象关于直线x=b+a2成轴对称.
    结论❹:函数y=f(x)与y=-f(2a-x)+2b的图象关于点A(a,b)成中心对称.
    二、函数周期性的结论
    1.函数周期性的常用结论
    结论❺:若f(x+a)=f(x-a),则f(x)的一个周期为2a;
    结论❻:若f(x+a)=-f(x),则f(x)的一个周期为2a;
    结论❼:若f(x+a)+f(x)=c(a≠0),则f(x)的一个周期为2a;
    结论❽:若f(x)=f(x+a)+f(x-a)(a≠0),
    则f(x)的一个周期为6a;
    结论❾:若f(x+a)=1f(x),则f(x)的一个周期为2a;
    结论:若f(x+a)=-1f(x),则f(x)的一个周期为2a.
    2.由对称性推得周期
    结论:若函数y=f(x)的图象同时关于直线
    x=a和直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期.
    结论:若函数y=f(x)的图象同时关于点A(a,c)和点B(b,c)成中心对称(a≠b),则y=f(x)是周期函数,且2|a-b|是其一个周期.
    结论:若函数y=f(x)的图象关于点A(a,c)成中心对称,又关于直线x=b成轴对称(a≠b),则y=f(x)是周期函数,且4|a-b|是其一个周期.
    [记法]两次对称成周期,两轴两心二倍差,一轴一心四倍差.
    【结论应用】
    [典例1]函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则下列正确的是( D )
    A.f(x)是偶函数 B.f(x)是奇函数
    C.f(x+1)=f(x+2) D.f(x+3)是奇函数
    解析:函数f(x+1)的图象是由函数f(x)的图象向左平移1个单位得到的,由f(x+1)是奇函数,可知f(x+1)的对称中心是(0,0),从而f(x)的对称中心是(1,0),又因为f(x-1)是奇函数,从而f(x)的对称中心是(-1,0),由结论12可知,f(x)是周期函数,其周期是
    T=2[1-(-1)]=4,于是f(x+3)=f(x-1),由已知f(x-1)是奇函数,故f(x+3)是奇函数.
    [典例2]设函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在区间0,7上只有f(1)=f(3)=0,则方程f(x)=0在闭区间-2 023,2 023上根的个数为( C )
    A.806 B.807
    C.810 D.811
    解析:因为f(2-x)=f(2+x),由结论1可知,f(x)的图象关于直线x=2对称,
    又f(7-x)=f(7+x),同理可得f(x)的图象关于直线x=7对称.
    由结论11得,f(x)是周期函数,其周期为T=2×(7-2)=10,
    因为f(1)=f(3)=0,所以f(11)=f(13)=0,f(-9)=f(-7)=0.
    故f(x)=0在[0,10]和[-10,0]上均有两个解,从而可知在[0,2 023]上有406个解,在[-2 023,0]上有404个解.所以方程f(x)=0在闭区间-2 023,2 023上根的个数为810.
    [典例3]已知函数f(x)的定义域为R,满足f(1+x)=f(1-x),f(x)=-f(4-x),若f(1)=2,则∑k=12 024f(k)=( B )
    A.-1 B.0 C.1 D.2
    解析:因为f(1+x)=f(1-x),由结论1可知,函数f(x)的图象关于x=1对称,又
    f(x)=-f(4-x),由结论2可知函数f(x)的图象关于点(2,0)对称.由结论13可知,函数的周期T=4×|2-1|=4.由f(1)=2,可得f(3)=-f(1)=-2.令x=2,得f(2)=-f(2),解得f(2)=0,
    f(4)=-f(0)=0.所以一个周期内f(1)+f(2)+f(3)+f(4)=2+0+(-2)+0=0,
    因为2 024=506×4,所以∑k=12 024f(k)=506[f(1)+f(2)+f(3)+f(4)]=0.
    [典例4](2021·全国高考)已知函数f(x)的定义域为R,f(x+2)为偶函数,f(2x+1)为奇函数,则( B )
    A.f(-12)=0 B.f(-1)=0
    C.f(2)=0 D.f(4)=0
    解析:f(x+2)为偶函数,所以其图象关于x=0对称,则函数f(x)的图象关于直线x=2对称,又f(2x+1)为奇函数,所以其关于(0,0)对称,
    通过函数图象变换,可以得到f(2x)关于(12,0)对称,进而f(x)关于(1,0)对称.
    由结论13可得,函数f(x)的周期为T=4×|2-1|=4.
    又f(x)关于(1,0)对称.
    由结论2可得,f(-x)=-f(2+x),
    所以f(-1)=-f(3)=-f(3-4)=-f(-1),
    所以2f(-1)=0,解得f(-1)=0.
    相关学案

    高中数学公式与二级结论全测学案: 这是一份高中数学公式与二级结论全测学案,文件包含高中数学公式及二级结论pdf、高中数学公式及二级结论答案pdf等2份学案配套教学资源,其中学案共109页, 欢迎下载使用。

    椭圆与双曲线12个常考二级结论与模型学案-高考数学二轮复习: 这是一份椭圆与双曲线12个常考二级结论与模型学案-高考数学二轮复习,文件包含椭圆与双曲线12个常考二级结论与模型解析版pdf、椭圆与双曲线12个常考二级结论与模型学生版pdf等2份学案配套教学资源,其中学案共81页, 欢迎下载使用。

    2023届高考数学二轮复习专题9立体几何二级结论讲练学案: 这是一份2023届高考数学二轮复习专题9立体几何二级结论讲练学案,共35页。学案主要包含了结论阐述,应用场景,典例指引1,典例指引2,针对训练等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学复习拓展提升课三 对称性与周期性的二级结论(导学案)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map