|课件下载
搜索
    上传资料 赚现金
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)
    立即下载
    加入资料篮
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)01
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)02
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)03
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)04
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)05
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)06
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)07
    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)08
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册)

    展开
    这是一份1.4.2 充要条件-高一数学新教材配套课件(人教A版必修第一册),共30页。PPT课件主要包含了学习目标,自主学习,小试牛刀,经典例题,当堂达标,课堂小结等内容,欢迎下载使用。

    1.理解充要条件的意义.(重点)2.会判断一些简单的充要条件问题.(重点)3.能对充要条件进行证明.(难点)
    1.如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有 _ ,又有 ,就记作 ,此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为 条件.2.如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p⇔q,那么p与q互为 条件.
    思考1 若p是q的充要条件,则命题p和q是两个相互等价的命题.这种说法对吗?
    答案 正确.若p是q的充要条件,则p⇔q,即p等价于q,故此说法正确.
    思考2 “p是q的充要条件”与“p的充要条件是q”的区别在哪里?
    答案 (1)p是q的充要条件说明p是条件,q是结论.(2)p的充要条件是q说明q是条件,p是结论.
    1.“x>1”是“x+2>3”的_______条件.
    解析 当x>1时,x+2>3;当x+2>3时,x>1,所以“x>1”是“x+2>3”的充要条件.
    2.“(2x-1)x=0”是“x=0”的____________条件.
    3.△ABC是锐角三角形是∠ABC为锐角的____________条件.
    4.若p是q的充要条件,q是r的充要条件,则p是r的_______条件.
    解析 因为p⇔q,q⇔r,所以p⇔r,所以p是r的充要条件.
    例1 下列各组命题中,哪些p是充要条件?
    题型一 充要条件的判断
    (1)p:四边形是正方形,q:四边形的对角线互相垂直且平分;(2)p:两个三角形相似,q:两个三角形三边成比例;(3)p:xy>0,q:x>0,y>0;(4)p:x=1是一元二次方程ax²+bx+c=0的一个根,q:a+b+c=0(a≠0).
    总结:判断充分条件、必要条件及充要条件的三种方法(1)定义法:直接判断“若p,则q”以及“若q,则p”的真假.(2)集合法:即利用集合的包含关系判断.(3)传递法:充分条件和必要条件具有传递性,即由p1⇒p2⇒…⇒pn,可得p1⇒pn;充要条件也有传递性.
    跟踪训练1 指出下列各组命题中,p是q的什么条件(“充分不必要条件” “必要不充分条件”“充要条件”“既不充分又不必要条件”).(1)p:x2>0,q:x>0;
    解 p:x2>0,则x>0或x<0,q:x>0,故p是q的必要不充分条件.
    (2)p:a能被6整除,q:a能被3整除;
    解 p:a能被6整除,故也能被3和2整除,q:a能被3整除,故p是q的充分不必要条件.
    (3)p:两个角不都是直角,q:两个角不相等;
    解 p:两个角不都是直角,这两个角可以相等,q:两个角不相等,则这两个角一定不都是直角,故p是q的必要不充分条件.
    (4)p:A∩B=A,q:∁UB⊆∁UA.
    解 ∵A∩B=A⇔A⊆B⇔∁UB⊆∁UA,∴p是q的充要条件.
    例2 已知: O 的半径为r ,圆心O到是直线l的距离为d,求证:d=r是直线l与 O 相切的充要条件.
    题型二 充要条件的证明
    总结:充要条件证明的两个思路(1)直接法:证明p是q的充要条件,首先要明确p是条件,q是结论;其次推证p⇒q是证明充分性,推证q⇒p是证明必要性.(2)集合思想:记p:A={x|p(x)},q:B={x|q(x)},若A=B,则p与q互为充要条件.
    跟踪训练2 求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
    证明 必要性:由于方程ax2+bx+c=0有一正根和一负根,
    所以方程ax2+bx+c=0有两个相异实根,且两根异号,即方程ax2+bx+c=0有一正根和一负根.综上可知,一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.
    题型三 充要条件的应用
    例3 已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若p是q的必要不充分条件,求实数m的取值范围.
    变式训练 本例中p,q不变,是否存在实数m使p是q的充要条件?若存在,求出m的值;若不存在,请说明理由.
    解 因为p:-2≤x≤10,q:1-m≤x≤1+m(m>0).
    故不存在实数m,使得p是q的充要条件.
    总结:应用充分不必要、必要不充分及充要条件求参数值(范围)的一般步骤(1)根据已知将充分不必要条件、必要不充分条件或充要条件转化为集合间的关系.(2)根据集合间的关系构建关于参数的方程(组)或不等式(组)求解.
    跟踪训练3 设p:x>1,q:x>a,若p是q的充分不必要条件,求实数a的取值范围.
    1.“12.“x=1”是“x2-2x+1=0”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件
    解析 若x=1,则x2-2x+1=0;若x2-2x+1=0,即(x-1)2=0,则x=1.故为充要条件.
    3.设x∈R,则“2-x≥0”是“|x-1|≤1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件
    解析 由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.当x≤2时不一定有0≤x≤2,而当0≤x≤2时一定有x≤2,∴“2-x≥0”是“|x-1|≤1”的必要不充分条件.
    4.设a,b是实数,则“a+b>0”是“ab>0”的________________条件.
    解析 若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若ab>0,取a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分又不必要条件.
    5.求证:一次函数y=kx+b(k≠0)的图象过原点的充要条件是b=0.
    证明 ①充分性:如果b=0,那么y=kx,当x=0时,y=0,函数图象过原点.②必要性:因为y=kx+b(k≠0)的图象过原点,所以当x=0时,y=0,得0=k·0+b,所以b=0.综上,一次函数y=kx+b(k≠0)的图象过原点的充要条件是b=0.
    1.知识清单:(1)充要条件概念的理解.(2)充要条件的证明.(3)充要条件的应用.2.方法归纳:等价转化.3.常见误区:条件和结论辨别不清.
    相关课件

    数学必修 第一册1.4 充分条件与必要条件备课ppt课件: 这是一份数学必修 第一册<a href="/sx/tb_c4000258_t3/?tag_id=26" target="_blank">1.4 充分条件与必要条件备课ppt课件</a>,共35页。PPT课件主要包含了学习目标,新课引入,课本练习,题型讲解,随堂检测等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件教课内容ppt课件: 这是一份高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件教课内容ppt课件,共14页。PPT课件主要包含了图14-2等内容,欢迎下载使用。

    2021学年第一章 集合与常用逻辑用语1.4 充分条件与必要条件教学演示ppt课件: 这是一份2021学年第一章 集合与常用逻辑用语1.4 充分条件与必要条件教学演示ppt课件,共20页。PPT课件主要包含了新知初探·课前预习,p⇒q,q⇒p,p⇔q,答案C,充要条件,题型探究·课堂解透,答案AD,答案A,答案BC等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map