2024年山西省晋中市榆次区中考二模数学试题(学生版+教师版)
展开1. 本试卷共8页,满分120分,考试时间120分钟.
2. 答卷前,考生务必将自己的姓名,准考证号填写在本试卷相应的位置.
3. 答案全部在答题卡上完成,答在本试卷上无效.
4. 考试结束后,将本试卷和答题卡一并交回.
一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1. 有理数的相反数是( )
A. B. C. D.
2. 近年来,全球新能源汽车发展如火如荼,我国新能源汽车产业异军突起,2024年1至2月,我国新能源汽车销量占世界新能源汽车销量的62%.下列图案是我国四款新能源汽车的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 小明五一假期在某博物馆看到了如图1所示的展品,了解到它是我国古代官仓、粮栈、米行等进行粮食计量的必备工具——米斗,凝聚着中国人上千年的智慧和匠心精神,且有着吉祥的寓意,是丰饶富足的象征.其示意图(不记厚度)如图2所示,则其俯视图为( )
A. B.
C. D.
5. 某城市湿地公园湖中有两个小岛A,B,湖边有一观景台C(如图),其中观景台C在小岛A的南偏东方向,在小岛B的南偏西方向,则的度数是( )
A. B. C. D.
6. 随着科技发展,人工智能已经悄然运用在各行各业.某款国产人工智能软件包含文学创作、数理逻辑推算、中文理解、多模态生成等多种功能.截至今年3月,该软件的用户已突破2.13亿,数据2.13亿用科学记数法可以表示为( )
A. B. C. D.
7. 不等式组的解集在数轴上表示正确的是( )
A. B.
C.
D.
8. 近几年青少年近视的现象越来越多,为保护视力,某公司推出一款亮度可调节的台灯.我们知道,导体中的电流I,与导体的电阻R、导体两端的电压U之间满足关系式,所以台灯灯光亮度的改变,可以通过调节总电阻来控制电流的变化实现.如图是该台灯的电流I(A)与电阻R()成反比例函数的图象.根据图象可知,下列说法正确的是( )
A. I与R的函数关系式是
B. 当时,
C. 当电阻R()越大时,该台灯的电流I(A)也越大
D. 当时,I的取值范围是
9. 某旅游景点的商场销售一款山西文创产品,平均每天可售出件,每件获利元.为了尽快减少库存,商场决定采取适当的降价措施.调查发现,如果这款文创产品的售价每降低元,那么平均每天可多售出件.商场要想平均每天获利元,这款文创产品每件应降价多少元?设这款文创产品每件降价元,根据题意可列方程为( )
A. B.
C. D.
10. 如图,正六边形的边长为2,以点B为圆心,以长为半径作弧,连接,则图中阴影部分的面积为( )
A. B. C. D.
二、填空题(本大题共5个小题,每小题3分,共15分)
11. 化简的结果是______.
12. 如图,的顶点A的坐标是,将先向右平移3个单位长度,再向下平移1个单位长度,则平移之后点A的对应点坐标为______.
13. 某校计划对高一新生采用随机摇号的方式分班,一共分为1班,2班,3班,4班四个班,若甲,乙两人是该校高一新生,则他们被分在班号不同的两个班级的概率为______.
14. 如图,已知是的外接圆,,.按照如下尺规作图的步骤进行操作:以点为圆心,以的长为半径作弧,交边于点;连接;分别以点,为圆心,以大于的长为半径作弧,两弧交于点,连接,交于点;连接,并延长交于点,连接.若设,的长度分别为,,则与的函数关系式为_____.
15. 如图,在菱形中,,,且,,若,则菱形的边长为______.
三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)
16. (1)计算:;
(2)解方程:.
17. 全面推进乡村振兴是实现中华民族伟大复兴重大任务,而产业振兴是乡村振兴的重中之重.我省某村发现该村盐碱地的水质与海水成分十分相近,便因地制宜发展特色水产养殖业,变废为宝,盐碱地上养出了“致富虾”,2023年养虾产业不仅让该村村集体增收,而且带动农民就业,帮助劳务增收,两项增收合计180万元.下一步,该村将继续开发建设养殖基地,预估项目建成后每年村集体增收将提高,劳务增收将提高,两项增收共提高100万元,请问2023年该村村集体增收和劳务增收分别是多少万元?
18. 2024年是五四运动胜利105周年和中国共产主义青年团成立102周年,为坚定团员和青年听党话、跟党走的理想信念,激励其继承和发扬爱国、进步、民主、科学的五四精神,某校开展了以“青春跟党走”为主题的知识竞赛活动.当日九(1)班的班主任王老师对本班参加竞赛的同学的竞赛成绩进行了统计,绘制了如图所示的统计图(均不完整).
请根据统计图中提供的信息,解答下列问题:
(1)九(1)班本次参加竞赛的同学共有______人;
(2)补全条形统计图;
(3)九(1)班同学本次竞赛成绩的平均分是______分;
(4)九(1)班的小红同学因病未参加竞赛,返校后参加了补测,成绩为80分.加入她的成绩后,请你对九(1)班总体成绩的变化情况进行评价.(请从“众数”“中位数”“平均数”“方差”中任选两方面进行具体说明)
19. 小贝和小亮住在同一个居民楼里,他俩发现对面商场外墙上新安装了一面大型电子屏,他们想测量其高度.如图,小贝在居民楼的点A处测得电子屏顶端E的仰角,小明在此居民楼的点C处测得电子屏底端F的仰角(已知图中各点都在同一竖直平面,且都与水平面垂直).他俩调查了解到,,居民楼与电子屏的水平距离为50m.请你根据以上信息帮助小贝和小亮求出该电子屏的高度(结果精确到0.1m.参考数据:,,,,,).
20. 如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点D为点C关于抛物线对称轴的对称点,作直线,点P为直线上方抛物线上的一个动点.
(1)直接写出A,B,C三点坐标;
(2)连接.求当面积最大时,点P的坐标.
21. 阅读与思考
下面是小明同学的数学日记,请仔细阅读内容并完成相应的任务.
任务:
(1)上述日记中的“依据”是指______;
(2)请将上述日记中的证明过程补充完整(只求证);
(3)完成“结论应用”中的两个问题.
22. 学科实践
23. 综合与实践
问题情境:数学活动课上,老师要求同学们以正方形为背景探索几何图形运动变化中的数学结论.如图1,正方形中,,点E,F分别是边,的中点,连接,点G是线段上的一个动点,连接,将线段绕点A逆时针方向旋转,得到,连接,.
猜想证明:
(1)针对老师给出的问题背景,“智慧小组”发现,请你证明这一结论;
操作探究:
(2)“善思小组”提出问题:如图2,当点G为线段的中点时,连接,试判断四边形的形状,并说明理由;
深入探究:
(3)“创新小组”在认真分析了旋转到不同位置时情形后,提出问题:若直线与直线交于点M,当为直角三角形时,请直接写出四边形的面积.
*年月日星期六
三角形的重心
如图,用铅笔可以支起一张均匀的三角形卡片,那么如何确定这个点的位置呢?
根据相关内容的学习,我知道了这个点是三角形的重心.三角形的三条中线交于一点,这点称为三角形的重心.三角形的重心有什么性质呢?
【问题探究】如图,已知中,中线,,交于点,我发现,,.
证明:延长至点,使,连接,.
∵是的中线,
∴.
∴四边形是平行四边形(依据).
∴.
…
【结论应用】如图,正方形网格中每个小正方形的边长都是(每个小正方形的顶点叫做格点),的顶点都在格点上.
(1)用无刻度直尺找到的重心;
(2)的面积为______.
设计“抛物线型”花边
驱动任务
花边历史悠久,最早出现于14世纪,工艺种类不胜枚举.某美术社团小组在学习了抛物线的相关知识后,计划设计“抛物线型”花边.
研究步骤
(1)认识模具,建立模型.
社团小组的同学们首先制作了一个“抛物线型”的模具,该模具的高度为24cm,并将其模具放置在了平面直角坐标系中(如图1),准备利用该模具设计“抛物线型”花边.
(2)摆放模具,制定方案.
同学们尝试在长为120cm,宽为24cm的矩形纸片上摆放该模具,经过讨论交流形成了以下两个方案.
方案一:如图2,将该模具完全放入矩形纸片中,发现恰好能绘制出一幅有5个连续花边组成的图案.
方案二:如图3,将模具的一部分放入矩形纸片中,绘制出上下两排各含有若干个连续花边的图案,每个花边(即每条抛物线)的高度相等,相对两个花边的顶点之间的距离为h.
(3)实施方案,展示作品.
……
问题解决
请根据上述研究步骤与相关数据,完成下列任务:
任务一:求出图1的平面直角坐标系中抛物线模具的函数表达式;
任务二:若采用研究步骤中的方案二进行设计,请你通过计算确定当时一排中最多可摆放的花边个数.
2024年山西省晋中市平遥县中考二模数学试题(学生版+教师版): 这是一份2024年山西省晋中市平遥县中考二模数学试题(学生版+教师版),文件包含2024年山西省晋中市平遥县中考二模数学试题教师版docx、2024年山西省晋中市平遥县中考二模数学试题学生版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
2024年山西省晋中市榆次区多校中考二模数学试题 (原卷版+解析版): 这是一份2024年山西省晋中市榆次区多校中考二模数学试题 (原卷版+解析版),文件包含2024年山西省晋中市榆次区多校中考二模数学试题原卷版docx、2024年山西省晋中市榆次区多校中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2024年山西省晋中市榆次区中考一模数学试题(原卷版+解析版): 这是一份2024年山西省晋中市榆次区中考一模数学试题(原卷版+解析版),文件包含2024年山西省晋中市榆次区中考一模数学试题原卷版docx、2024年山西省晋中市榆次区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。