所属成套资源:【二轮复习】2024年中考数学专题练习(全国通用)
【二轮复习】2024年中考数学 题型3 方程应用 类型3 二次方程32题(专题训练)
展开
这是一份【二轮复习】2024年中考数学 题型3 方程应用 类型3 二次方程32题(专题训练),文件包含二轮复习2024年中考数学题型3方程应用类型3二次方程32题专题训练教师版docx、二轮复习2024年中考数学题型3方程应用类型3二次方程32题专题训练学生版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
C.D.
【答案】B
【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,根据题意列出一元二次方程即可.
【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x,
根据题意得,.
故选:B.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
2.(2022·重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是( )
A. B. C. D.
【答案】B
【分析】第一年共植树400棵,第二年植树400(1+x)棵,第三年植树400(1+x)²棵,再根据题意列出方程即可.
【详解】第一年植树为400棵,第二年植树为400(1+x)棵,第三年400(1+x)²棵,根据题意列出方程:.故选:B.
【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.
3.(2023·黑龙江·统考中考真题)如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是( )
A.B.C.或D.
【答案】A
【分析】设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,根据花草的种植面积为,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.
【详解】解:设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,
依题意得:
解得:,(不合题意,舍去),
∴小路宽为.
故选:A.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
4.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为米,则根据题意,列方程为( )
A.B.
C.D.
【答案】C
【解析】
【分析】
把阴影部分分别移到矩形的上边和左边,可得种植面积为一个矩形,根据种植的面积为600列出方程即可.
【详解】
解:如图,设小道的宽为,
则种植部分的长为,宽为
由题意得:.
故选C.
【点睛】
考查一元二次方程的应用;利用平移的知识得到种植面积的形状是解决本题的突破点;得到种植面积的长与宽是解决本题的关键.
5.(2022·重庆)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为,根据题意,下面所列方程正确的是( )
A.B.C.D.
【答案】A
【分析】平均增长率为x,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.
【详解】解:由题意得:第一天揽件200件,第三天揽件242件,
∴可列方程为:,故选:A.
【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.
6.(2022·新疆)临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x,则根据题意,可列方程为( )
A.B.C.D.
【答案】C
【分析】设这两个月销售额的月平均增长率为x,则第二个月的销售额是万元,第三个月的销售额为万元,即可得.
【详解】解:设这两个月销售额的月平均增长率为x,则第二个月的销售额是万元,第三个月的销售额为万元,∴故选C.
【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.
7.国家统计局统计数据 显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由亿元增加到亿元.设我国2017年至2019年快递业务收入的年平均增长率为.则可列方程为( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
设我国2017年至2019年快递业务收入的年平均增长率为,根据增长率的定义即可列出一元二次方程.
【详解】
设我国2017年至2019年快递业务收入的年平均增长率为,
∵2017年至2019年我国快递业务收入由亿元增加到亿元
即2019年我国快递业务收入为亿元,
∴可列方程:,
故选C.
【点睛】
此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系得到方程.
8.(2022·山东泰安)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A. B. C. D.
【答案】A
【分析】设这批椽的数量为x株,则一株椽的价钱为3(x−1)文,利用总价=单价×数量,即可得出关于x的一元二次方程,此题得解.
【详解】解:∵这批椽的数量为x株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x−1)文,依题意得:3(x−1)x=6210,故选:A.
【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
9.目前以等为代表的战略性新兴产业蓬勃发展.某市2019年底有用户2万户,计划到2021年底全市用户数累计达到8.72万户.设全市用户数年平均增长率为,则值为( )
A.B.C.D.
【答案】C
【解析】
【分析】
先用含x的代数式表示出2020年底、2021年底用户的数量,然后根据2019年底到2021年底这三年的用户数量之和=8.72万户即得关于x的方程,解方程即得答案.
【详解】
解:设全市用户数年平均增长率为,根据题意,得:
,
解这个方程,得:,(不合题意,舍去).
∴x的值为40%.
故选:C.
【点睛】
本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
10.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )
A.14B.11C.10D.9
【答案】B
【分析】
设每轮传染中平均一个人传染了x个人,由题意可得,然后求解即可.
【详解】
解:设每轮传染中平均一个人传染了x个人,由题意可得:
,
解得:(舍去),
故选B.
【点睛】
本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.
11.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x,则可列方程为( )
A.B.
C.D.
【答案】C
【分析】
根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.
【详解】
设从2018年到2020年快递业务量的年平均增长率为x,
2018年我国快递业务量为:507亿件,
2019年我国快递业务量为:=亿件,
2020年我国快递业务量为:+,
根据题意,得:
故选C.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.
12.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是( )
A.B.
C.D.
【答案】B
【分析】
设年平均增长率为x,根据2020年底森林覆盖率=2018年底森林覆盖率乘,据此即可列方程求解.
【详解】
解:设年平均增长率为x,由题意得:
,
故选:B.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可.
13.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为,下面所列方程正确的是( )
A.B.
C.D.
【答案】C
【分析】
根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.
【详解】
设这种药品的成本的年平均下降率为x,根据题意得:
故选:C.
【点睛】
本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.
14.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )
A.6B.7C.8D.9
【答案】D
【解析】
【分析】
根据球赛问题模型列出方程即可求解.
【详解】
解:设参加此次比赛的球队数为x队,根据题意得:
x(x﹣1)=36,
化简,得x2﹣x﹣72=0,
解得x1=9,x2=﹣8(舍去),
答:参加此次比赛的球队数是9队.
故选:D.
【点睛】
本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.
15.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位个,并按计划逐月增长,预计八月份将提供岗位个.设七、八两个月提供就业岗位数量的月平均增长率为,根据题意,可列方程为___________.
【答案】
【分析】设七、八两个月提供就业岗位数量的月平均增长率为,根据题意列出一元二次方程,即可求解.
【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为,根据题意得,
,
故答案为:.
【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.
16.(2022·浙江杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(),则_________(用百分数表示).
【答案】30%
【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x的一元二次方程,解方程即可.
【详解】解:设新注册用户数的年平均增长率为x(),则2020年新注册用户数为100(1+x)万,2021年的新注册用户数为100(1+x)2万户,
依题意得100(1+x)2=169,
解得:x1=0.3,x2=-2.3(不合题意舍去),
∴x=0.3=30%,故答案为:30%.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
17..(2023·湖南·统考中考真题)某校截止到年底,校园绿化面积为平方米.为美化环境,该校计划年底绿化面积达到平方米.利用方程想想,设这两年绿化面积的年平均增长率为,则依题意列方程为__________.
【答案】
【分析】设这两年绿化面积的年平均增长率为,依题意列出一元二次方程即可求解.
【详解】解:设这两年绿化面积的年平均增长率为,则依题意列方程为,
故答案为:.
【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.
18.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为,则可列方程为________.
【答案】
【分析】
此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.
【详解】
解:设平均每年增产的百分率为x;
第一年粮食的产量为:300(1+x);
第二年粮食的产量为:300(1+x)(1+x)=300(1+x)2;
依题意,可列方程:300(1+x)2=363;
故答案为:300(1+x)2=363.
【点睛】
本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
19.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.
【答案】
【分析】
根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值,按照数量关系列方程即可得解.
【详解】
解:根据题意,第一季度地区生产总值平均增长率第三季度地区生产总值
列方程得:,
故答案为:.
【点睛】
本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.
20.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于的方程的两个根,则的值为______.
【答案】8或9
【分析】
分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.
【详解】
解:由题意,分以下两种情况:
(1)当4为等腰三角形的腰长时,则4是关于的方程的一个根,
因此有,
解得,
则方程为,解得另一个根为,
此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
(2)当4为等腰三角形的底边长时,则关于的方程有两个相等的实数根,
因此,根的判别式,
解得,
则方程为,解得方程的根为,
此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
综上,的值为8或9,
故答案为:8或9.
【点睛】
本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.
21.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.
【答案】
【分析】设年买书资金的平均增长率为,根据2022年买书资金2020年买书资金建立方程,解方程即可得.
【详解】解:设年买书资金的平均增长率为,
由题意得:,
解得或(不符合题意,舍去),
答:年买书资金的平均增长率为.
【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.
22(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
【答案】(1)20% (2)18个
【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为,根据2019年投入资金2021年投入的总资金,列出方程求解即可;
(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.
【解析】(1)解:设该市改造老旧小区投入资金的年平均增长率为,
根据题意得:,解这个方程得,,,
经检验,符合本题要求.
答:该市改造老旧小区投入资金的年平均增长率为20%.
(2)设该市在2022年可以改造个老旧小区,
由题意得:,解得.
∵为正整数,∴最多可以改造18个小区.
答:该市在2022年最多可以改造18个老旧小区.
【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.
23.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.
(1)求这两个月中该景区游客人数的月平均增长率;
(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?
【答案】(1)这两个月中该景区游客人数的月平均增长率为;(2)5月份后10天日均接待游客人数最多是1万人
【分析】(1)设这两个月中该景区游客人数的月平均增长率为,根据题意,列出一元二次方程,进行求解即可;
(2)设5月份后10天日均接待游客人数是y万人,根据题意,列出不等式进行计算即可.
【详解】(1)解:设这两个月中该景区游客人数的月平均增长率为,由题意,得:
,
解得:(负值已舍掉);
答:这两个月中该景区游客人数的月平均增长率为;
(2)设5月份后10天日均接待游客人数是y万人,由题意,得:
,
解得:;
∴5月份后10天日均接待游客人数最多是1万人.
【点睛】本题考查一元二次方程和一元一次不等式的实际应用,找准等量关系,正确的列出方程和不等式,是解题的关键.
24.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加.5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元.求的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了.求6月份每吨再生纸的利润是多少元?
【答案】(1)4月份再生纸的产量为500吨(2)的值20(3)6月份每吨再生纸的利润是1500元
【分析】(1)设3月份再生纸产量为吨,则4月份的再生纸产量为吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可;
(2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;
(3)设4至6月每吨再生纸利润的月平均增长率为,5月份再生纸的产量为吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;
【解析】(1)解:设3月份再生纸产量为吨,则4月份的再生纸产量为吨,
由题意得:,解得:,∴,
答:4月份再生纸的产量为500吨;
(2)解:由题意得:,
解得:或(不合题意,舍去)
∴,∴的值20;
(3)解:设4至6月每吨再生纸利润的月平均增长率为,5月份再生纸的产量为吨,
∴
答:6月份每吨再生纸的利润是1500元.
【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.
25.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.
(1)求这两个月参观人数的月平均增长率;
(2)按照这个增长率,预计6月份的参观人数是多少?
【答案】(1)10%;(2)13.31万
【分析】
(1)设这两个月参观人数的月平均增长率为,根据题意列出等式解出即可;
(2)直接利用(1)中求出的月平均增长率计算即可.
【详解】
(1)解:设这两个月参观人数的月平均增长率为,
由题意得:,
解得:,(不合题意,舍去),
答:这两个月参观人数的月平均增长率为.
(2)(万人),
答:六月份的参观人数为13.31万人.
【点睛】
本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.
26.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
【答案】(1)20%;(2)能
【分析】
(1)设亩产量的平均增长率为x,依题意列出关于x的一元二次方程,求解即可;
(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.
【详解】
解:(1)设亩产量的平均增长率为x,根据题意得:
,
解得:,(舍去),
答:亩产量的平均增长率为20%.
(2)第四阶段的亩产量为(公斤),
∵,
∴他们的目标可以实现.
【点睛】
本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.
27.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.
(1)请直接写出y(个)与x(元)之间的函数关系式;
(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?
(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?
【答案】(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
【分析】
(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;
(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;
(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题.
【详解】
(1)由题意可得,y=100-2(x-60)=-2x+220;
(2)由题意可得,
(-2x+220)(x-40)=2400,
解得,,,
∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.
答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.
(3)设该网店每星期的销售利润为w元,由题意可得
w=(-2x+220)(x-40)=,
当时,w有最大值,最大值为2450,
∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.
【点睛】
本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.
28.(2020·重庆中考真题)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.
(1)求A、B两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加,求a的值.
【答案】(1)A品种去年平均亩产量是400、B品种去年平均亩产量是500千克;(2)10.
【解析】
【分析】
(1)设A、B两个品种去年平均亩产量分别是x、y千克,根据题意列出方程组,解方程组即可得到答案;
(2)根据题意分别表示A品种、B品种今年的收入,利用总收入等于A品种、B品种今年的收入之和,列出一元二次方程求解即可得到答案.
【详解】
(1)设A、B两个品种去年平均亩产量分别是x、y千克,由题意得
,
解得.
答:A.B两个品种去年平均亩产量分别是400、500千克
(2)根据题意得:.
令a%=m,则方程化为:.
整理得10m2-m=0,
解得:m1=0(不合题意,舍去),m2=0.1
所以a%=0.1,所以a=10,
答:a的值为10.
【点睛】
本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.
29.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.
(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?
(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加,这两种小面的总销售额在4月的基础上增加.求a的值.
【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a的值为8.
【分析】
(1)设每份“堂食”小面和“生食”小面的价格分别是x、y元,根据题意列出二元一次方程组,解方程组即可;
(2)根据题意列出一元二次方程,解方程即可.
【详解】
解:(1)设每份“堂食”小面和“生食”小面的价格分别是x、y元,根据题意列方程组得,,
解得,,
答:每份“堂食”小面价格是7元,“生食”小面的价格是5元.
(2)根据题意得,,
解得,(舍去),,
答:a的值为8.
【点睛】
本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.
30.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:
(1)求y(千克)与x(元/千克)之间的函数表达式;
(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?
【答案】(1);(2)60元/千克或80元/千克;(3)70元/千克;800元
【解析】
【分析】
(1)利用待定系数法来求一次函数的解析式即可;
(2)依题意可列出关于销售单价x的方程,然后解一元二次方程组即可;
(3)利用每件的利润乘以销售量可得总利润,然后根据二次函数的性质来进行计算即可.
【详解】
解:(1)设y与x之间的函数表达式为(),将表中数据(55,70)、(60,60)代入得:
,
解得:,
∴y与x之间的函数表达式为;
(2)由题意得:,
整理得,
解得,
答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;
(3)设当天的销售利润为w元,则:
,
∵﹣2<0,
∴当时,w最大值=800.
答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.
【点睛】
本题考查了待定系数法求一次函数的解析式、一元二次方程和二次函数在实际问题中的应用,理清题中的数量关系是解题的关键.
31.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.
(1)A、B两种产品的销售单价分别是多少元?
(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加%.求a的值.
【答案】(1)A产品的销售单价为300元,B产品的销售单价为200元;(2)20
【分析】
(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元,根据题意列出方程解出即可;
(2)设去年每个车间生产产品的数量为t件,根据题意根据题意列出方程解出即可;
【详解】
解:(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元.
根据题意,得
.
解这个方程,得.
则.
答:A产品的销售单价为300元,B产品的销售单价为200元.
(2)设去年每个车间生产产品的数量为t件,根据题意,得
设a%=m,则原方程可化简为.
解这个方程,得(舍去).
∴a=20.
答:a的值是20.
【点睛】
本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元二次方程.
32.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.
(1)计划到2020年底,全省5G基站的数量是多少万座?
(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.
【答案】
(1)计划到2020年底,全省5G基站的数量是6万座.
(2)2020年底到2022年底,全省5G基站数量的年平均增长率为70%.
【解析】
(1)1.5×4=6(万座).
答:计划到2020年底,全省5G基站的数量是6万座.
(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,
根据题意,得:6(1+x)2=17.34,
解得:x1=0.7=70%,x2=–2.7(舍去).
答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.
【名师点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
销售单价x(元/千克)
55
60
65
70
销售量y(千克)
70
60
50
40
相关试卷
这是一份题型01 计算 类型三 方程及不等式85题(专题训练)-2024年中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型一计算类型三方程及不等式85题专题训练原卷版docx、题型一计算类型三方程及不等式85题专题训练解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份【二轮复习】中考数学 题型11 综合探究题 类型3 与折叠有关的探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型3与折叠有关的探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型3与折叠有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份【二轮复习】中考数学 题型8 函数的实际应用 类型3 利润最值问题29题(专题训练),文件包含二轮复习中考数学题型8函数的实际应用类型3利润最值问题29题专题训练教师版docx、二轮复习中考数学题型8函数的实际应用类型3利润最值问题29题专题训练学生版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。