2024届广东省广州市天河区高三三模考试数学试卷(无答案)
展开
这是一份2024届广东省广州市天河区高三三模考试数学试卷(无答案),共5页。试卷主要包含了005B等内容,欢迎下载使用。
本卷满分150分,考试时间120分钟。
注意事项:
1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B铅笔把考号的对应数字涂黑。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液。不按以上要求作答的答案无效。
4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A.B.C.D.
2.当时,复数在复平面内对应的点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.等比数列满足,,则( )
A.B.C.1D.2
4.已知,,,则a,b,c的大小关系为( )
A.B.C.D.
5.已知,是双曲线C的两个焦点,P为C上一点,且,,则C的离心率为( )
A.B.C.D.3
6.设向量,,当,且时,则记作;当,且时,则记作,有下面四个结论:
①若,,则;
②若且,则;
③若,则对于任意向量,都有;
④若,则对于任意向量,都有;
其中所有正确结论的序号为( )
A.①②③B.②③④C.①③D.①④
7.已知斜三棱柱中,O为四边形对角线的交点,设四棱锥的体积为,三棱柱的体积为,则( )
A.B.C.D.
8.在乎面直角坐标系中,O为坐标原点,已知直线,点A,B为圆上两动点,且满足,则A,B到直线l的距离之和的最小值为( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分、在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.在某次学科期末检测后,从全部考生中选取100名考生的成绩(百分制,均为整数)分成,,,,五组后,得到如下图的频率分布直方图,则( )
A.图中a的值为0.005B.低于70分的考生人数约为40人
C.考生成绩的平均分约为73分D.估计考生成绩第80百分位数为83分
10.已知函数,则( )
A.B.
C.D.
11.在正四棱柱中,,,E,F分别为,的中点,点M是侧面上一动点(含边界),则下列结论正确的是( )
A.平面
B.若,则点M的轨迹为抛物线的一部分
C.以为直径的球面与正四棱柱各棱共有16个公共点
D.以为直径的球面与正四棱柱各侧面的交线总长度为
三、填空题:本题共3小题,每小题5分,共15分.
12.在的展开式中,若各项系数的和为0,则的系数为______.
13.函数,其中且,若函数是单调函数,则a的一个可能取值为______.
14.在一个抽奖游戏中,主持人从编号为1,2,3,4的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭,也就是主持人知道奖品在哪个箱子里,当抽奖人选择了某个箱子后,在箱子打开之前,主持人先随机打开了另一个没有奖品的箱子,并问抽奖人是否愿意更改选择以便增加中奖概率.现在已知甲选择了1号箱,用表示i号箱有奖品(,2,3,4),用表示主持人打开i号箱子(,3,4),则______,若抽奖人更改了选择,则其中奖概率为______.,
15.(13分)
A题:在锐角中,内角A,B,C的对边分别为a,b,c,且.
(1)求A;
(2)若D是边上一点(不包括端点),且,求的取值范围.
B题:已知数列的各项均为正数,,记为的前n项和.
(1)从下面①②③中选取两个作为条件,证明另外一个成立.
①数列是等差数列;②数列是等差数列;③.
(2)若,在(1)的条件下,将在数列中,但不在数列中的项从小到大依次排列构成数列,求数列的前20项和.
16.(15分)
在五面体中,,,,,,,平面平面.
(1)证明:并求出,之间的距离;
(2)求出平面和平面夹角的余弦值.
17.(15分)
高一(1)班每周举行历史答题擂台比赛,排名前2名的同学组成守擂组,下周由3位同学组成攻擂组挑战,已知每位守擂同学答对每道题的概率为,每位攻擂同学答对每道题的概率为,每道题每位同学答题互不影响.每道题由每组成员依次答题,只要有一人答对,则这道题该组得1分,否则这道题该组得0分.为提高攻擂同学的积极性,第一题由攻擂组先答,若该组同学均未答对,再由守擂组答;从第二题开始,两组进行抢答,抢到的组回答,且不管其是否答对,另一组不能补答.已知抢答环节每题守擂组抢到的概率均为.
(1)求攻擂组答第一题得1分的概率;
(2)求守擂组在第一题后得0分的概率;
(3)设X为三题后守擂组的得分,求X的分布列与数学期望.
18.(17分)
已知函数.
(1)求的极值;
(2)已知,证明:.
19.(17分)一般地,当且时,方程表示的椭圆称为椭圆的相似椭圆.已知椭圆,椭圆(且)是椭圆C的相似椭圆,点P为椭圆上异于其左,右顶点M,N的任意一点.
(1)当时,直线与椭圆C,自上而下依次交于R,Q,S,T四点,探究,的大小关系,并说明理由.
(2)当(e为椭圆C的离心率)时,设直线与椭圆C交于点A,B,直线与椭圆C交于点D,E,求的值.
相关试卷
这是一份广东省广州市天河区2024届高三毕业班综合测试(二)数学试卷(无答案),共5页。试卷主要包含了005,若直线与圆相切,则圆与圆,已知,则,设,随机变量取值的概率均为0等内容,欢迎下载使用。
这是一份2023年广东省广州市天河区高考数学三模试卷,共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省广州市天河区2023届高三数学二模试卷【含答案】,共11页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。